A new graph-theoretic technique for the analysis of genetic resources data

R.L. Burt, W.T. Williams, D.J. Abel
{"title":"A new graph-theoretic technique for the analysis of genetic resources data","authors":"R.L. Burt,&nbsp;W.T. Williams,&nbsp;D.J. Abel","doi":"10.1016/0304-3746(83)90006-9","DOIUrl":null,"url":null,"abstract":"<div><p>The problems of analysing genetic resources data are reviewed, with particular reference to the use of graph-theoretic methods and to the concept of “validation”. A taxonomically difficult set of <em>Stylosanthes</em> (Leguminosae) accessions is subjected to classification, a minimum spanning tree, and a two-neighbour network. It is then subjected to a novel multiple-nearest-neighbour approach (program NEBALL) which provides a more detailed and exact summary of the configuration; this is validated by appeal to phytochemical, provenance and performance data. The results suggest that, providing the assumptions implicit in the model are met, the new technique may well be the most powerful yet available for the study of genetic resources data.</p></div>","PeriodicalId":100066,"journal":{"name":"Agro-Ecosystems","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1983-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0304-3746(83)90006-9","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Agro-Ecosystems","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/0304374683900069","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

The problems of analysing genetic resources data are reviewed, with particular reference to the use of graph-theoretic methods and to the concept of “validation”. A taxonomically difficult set of Stylosanthes (Leguminosae) accessions is subjected to classification, a minimum spanning tree, and a two-neighbour network. It is then subjected to a novel multiple-nearest-neighbour approach (program NEBALL) which provides a more detailed and exact summary of the configuration; this is validated by appeal to phytochemical, provenance and performance data. The results suggest that, providing the assumptions implicit in the model are met, the new technique may well be the most powerful yet available for the study of genetic resources data.

遗传资源数据分析的图论新技术
综述了遗传资源数据分析的问题,特别提到图论方法的使用和“验证”的概念。对一组分类困难的柱花草(豆科)资料进行了分类、最小生成树和双邻居网络。然后,它将受到一种新的多近邻方法(程序NEBALL)的影响,该方法提供了更详细和准确的配置摘要;这是通过对植物化学、种源和性能数据的呼吁来验证的。结果表明,如果模型中隐含的假设得到满足,新技术很可能是遗传资源数据研究中最强大的技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信