{"title":"Vibration Control of Flexible Joint Robots Using a Discrete-Time Two-Stage Controller Based on Time-Varying Input Shaping and Delay Compensation","authors":"M. Pham, B. Hazel, P. Hamelin, Zhaoheng Liu","doi":"10.1115/1.4050885","DOIUrl":null,"url":null,"abstract":"\n Most industrial serial robots use decentralized joint controllers assuming rigid body dynamics. To prevent exciting the flexible mode, gains are kept low, resulting in poor control bandwidth and disturbance rejection. In this paper, a two-stage flexible joint discrete controller is presented, in which the decentralized approach is extended with a stiffness to take into account the dominant coupling mode. In the first-stage, an input shaping feedforward shapes the rigid closed-loop dynamics into desired dynamics that does not produce link vibrations. Robotic dynamic computation based on a recursive Newton–Euler algorithm is conducted to update the feedforward link inertia parameter during robot motion. A second-stage is added to increase disturbance rejection. A generalized Smith predictor (GSP) is developed to compensate for delay and feedback sensor filtering. An effective methodology is presented to optimize the control loop gains. Numerical simulations and experiments on a six-joint robot manipulator confirm that the proposed controller improves control performances in terms of bandwidth, vibration attenuation, and disturbance rejection.","PeriodicalId":54846,"journal":{"name":"Journal of Dynamic Systems Measurement and Control-Transactions of the Asme","volume":"21 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2021-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Dynamic Systems Measurement and Control-Transactions of the Asme","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1115/1.4050885","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 2
Abstract
Most industrial serial robots use decentralized joint controllers assuming rigid body dynamics. To prevent exciting the flexible mode, gains are kept low, resulting in poor control bandwidth and disturbance rejection. In this paper, a two-stage flexible joint discrete controller is presented, in which the decentralized approach is extended with a stiffness to take into account the dominant coupling mode. In the first-stage, an input shaping feedforward shapes the rigid closed-loop dynamics into desired dynamics that does not produce link vibrations. Robotic dynamic computation based on a recursive Newton–Euler algorithm is conducted to update the feedforward link inertia parameter during robot motion. A second-stage is added to increase disturbance rejection. A generalized Smith predictor (GSP) is developed to compensate for delay and feedback sensor filtering. An effective methodology is presented to optimize the control loop gains. Numerical simulations and experiments on a six-joint robot manipulator confirm that the proposed controller improves control performances in terms of bandwidth, vibration attenuation, and disturbance rejection.
期刊介绍:
The Journal of Dynamic Systems, Measurement, and Control publishes theoretical and applied original papers in the traditional areas implied by its name, as well as papers in interdisciplinary areas. Theoretical papers should present new theoretical developments and knowledge for controls of dynamical systems together with clear engineering motivation for the new theory. New theory or results that are only of mathematical interest without a clear engineering motivation or have a cursory relevance only are discouraged. "Application" is understood to include modeling, simulation of realistic systems, and corroboration of theory with emphasis on demonstrated practicality.