K. Roushangar, M. Alami, H. Golmohammadi, S. Shahnazi
{"title":"Monitoring and prediction of land use/land cover changes and water requirements in the basin of the Urmia Lake, Iran","authors":"K. Roushangar, M. Alami, H. Golmohammadi, S. Shahnazi","doi":"10.2166/ws.2023.132","DOIUrl":null,"url":null,"abstract":"\n As one of the largest super-saline lakes in the world, Lake Urmia in northwestern Iran has been facing severe drying in recent years. Drought and rapid expansion of agricultural activities are considered to be the main driving factors for the shrinking of the lake. To address this problem, an analysis of the spatiotemporal dynamics of land use/land cover (LULC) is important. This research implemented a multi-source satellite image analysis through support vector machine (SVM) for mapping LULC distributions for the years 2000, 2010, and 2020. Cellular automata (CA)–Markov was prepared for modeling the future landscape changes for 2030 and 2040. In the last step, the water requirement of agriculture in the catchment area of the Urmia Lake was simulated through the NETWAT model. Through the employed future LULC modeling, it was found that the areas covered by irrigated agriculture and gardens will grow from 1,450 and 395 km2 to 3,600 and 1,650 km2 in 2040, respectively, as deduced from the changes that occurred from 2000 to 2020. This will increase the water requirement of agriculture from 1,500 billion cubic meters in 2000 to more than 4,100 billion cubic meters in 2040.","PeriodicalId":17553,"journal":{"name":"Journal of Water Supply Research and Technology-aqua","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2023-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Water Supply Research and Technology-aqua","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2166/ws.2023.132","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 1
Abstract
As one of the largest super-saline lakes in the world, Lake Urmia in northwestern Iran has been facing severe drying in recent years. Drought and rapid expansion of agricultural activities are considered to be the main driving factors for the shrinking of the lake. To address this problem, an analysis of the spatiotemporal dynamics of land use/land cover (LULC) is important. This research implemented a multi-source satellite image analysis through support vector machine (SVM) for mapping LULC distributions for the years 2000, 2010, and 2020. Cellular automata (CA)–Markov was prepared for modeling the future landscape changes for 2030 and 2040. In the last step, the water requirement of agriculture in the catchment area of the Urmia Lake was simulated through the NETWAT model. Through the employed future LULC modeling, it was found that the areas covered by irrigated agriculture and gardens will grow from 1,450 and 395 km2 to 3,600 and 1,650 km2 in 2040, respectively, as deduced from the changes that occurred from 2000 to 2020. This will increase the water requirement of agriculture from 1,500 billion cubic meters in 2000 to more than 4,100 billion cubic meters in 2040.
期刊介绍:
Journal of Water Supply: Research and Technology - Aqua publishes peer-reviewed scientific & technical, review, and practical/ operational papers dealing with research and development in water supply technology and management, including economics, training and public relations on a national and international level.