{"title":"Hiding debuggers from malware with apate","authors":"Hao Shi, J. Mirkovic","doi":"10.1145/3019612.3019791","DOIUrl":null,"url":null,"abstract":"Malware analysis uses debuggers to understand and manipulate the behaviors of stripped binaries. To circumvent analysis, malware applies a variety of anti-debugging techniques, such as self-modifying, checking for or removing breakpoints, hijacking keyboard and mouse events, escaping the debugger, etc. Most state-of-the-art debuggers are vulnerable to these anti-debugging techniques. In this paper, we first systematically analyze the spectrum of possible anti-debugging techniques and compile a list of 79 attack vectors. We then propose a framework, called Apate, which detects and defeats each of these attack vectors, by performing: (1) just-in-time disassembling based on single-stepping, (2) careful monitoring of the debuggee's execution and, when needed, modification of the debuggee's states to hide the debugger's presence. We implement Apate as an extension to WinDbg and extensively evaluate it using five different datasets, with known and new malware samples. Apate outperforms other debugger-hiding technologies by a wide margin, addressing 58+--465+ more attack vectors.","PeriodicalId":20728,"journal":{"name":"Proceedings of the Symposium on Applied Computing","volume":"16 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Symposium on Applied Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3019612.3019791","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24
Abstract
Malware analysis uses debuggers to understand and manipulate the behaviors of stripped binaries. To circumvent analysis, malware applies a variety of anti-debugging techniques, such as self-modifying, checking for or removing breakpoints, hijacking keyboard and mouse events, escaping the debugger, etc. Most state-of-the-art debuggers are vulnerable to these anti-debugging techniques. In this paper, we first systematically analyze the spectrum of possible anti-debugging techniques and compile a list of 79 attack vectors. We then propose a framework, called Apate, which detects and defeats each of these attack vectors, by performing: (1) just-in-time disassembling based on single-stepping, (2) careful monitoring of the debuggee's execution and, when needed, modification of the debuggee's states to hide the debugger's presence. We implement Apate as an extension to WinDbg and extensively evaluate it using five different datasets, with known and new malware samples. Apate outperforms other debugger-hiding technologies by a wide margin, addressing 58+--465+ more attack vectors.