A conversation with Dr. Haifeng Wang

Haifeng Wang
{"title":"A conversation with Dr. Haifeng Wang","authors":"Haifeng Wang","doi":"10.1145/2207243.2207264","DOIUrl":null,"url":null,"abstract":"My group mainly works on data mining applications in Internet products including the search engine. We study two types of data, Web data and user logs. First, the Web data includes different entities (e.g. websites and web pages), edges between entities (e.g. hyper links), and content (e.g. text and rich-media). Second, use logs contain various user behavior information produced by users when they are using the search engine or other Internet products. These two types of data have different properties, but are correlated and complementary. We build a complete view of the data, mine the most valuable knowledge from the data, and improve our various products, e.g. the Baidu search engine.","PeriodicalId":90050,"journal":{"name":"SIGKDD explorations : newsletter of the Special Interest Group (SIG) on Knowledge Discovery & Data Mining","volume":"84 1","pages":"91"},"PeriodicalIF":0.0000,"publicationDate":"2012-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIGKDD explorations : newsletter of the Special Interest Group (SIG) on Knowledge Discovery & Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2207243.2207264","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

My group mainly works on data mining applications in Internet products including the search engine. We study two types of data, Web data and user logs. First, the Web data includes different entities (e.g. websites and web pages), edges between entities (e.g. hyper links), and content (e.g. text and rich-media). Second, use logs contain various user behavior information produced by users when they are using the search engine or other Internet products. These two types of data have different properties, but are correlated and complementary. We build a complete view of the data, mine the most valuable knowledge from the data, and improve our various products, e.g. the Baidu search engine.
与王海峰博士的对话
我的小组主要研究数据挖掘在包括搜索引擎在内的互联网产品中的应用。我们研究两种类型的数据:Web数据和用户日志。首先,Web数据包括不同的实体(如网站和网页)、实体之间的边界(如超链接)和内容(如文本和富媒体)。其次,使用日志包含用户在使用搜索引擎或其他互联网产品时产生的各种用户行为信息。这两种类型的数据具有不同的属性,但又相互关联和互补。我们构建完整的数据视图,从数据中挖掘最有价值的知识,并改进我们的各种产品,例如百度搜索引擎。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信