Modeling visit behaviour in smart homes using unsupervised learning

A. N. Aicha, G. Englebienne, B. Kröse
{"title":"Modeling visit behaviour in smart homes using unsupervised learning","authors":"A. N. Aicha, G. Englebienne, B. Kröse","doi":"10.1145/2638728.2638809","DOIUrl":null,"url":null,"abstract":"Many algorithms on health monitoring from ambient sensor networks assume that only a single person is present in the home. We present an unsupervised method that models visit behaviour. A Markov modulated multidimensional non-homogeneous Poisson process (M3P2) is described that allows us to model weekly and daily variations and to combine multiple data streams, namely the front-door sensor transitions and the general sensor transitions. The results from nine months of sensor data collected in the apartment of an elderly person show that our model outperforms the standard Markov modulated Poisson process (MMPP).","PeriodicalId":20496,"journal":{"name":"Proceedings of the 2014 ACM International Joint Conference on Pervasive and Ubiquitous Computing: Adjunct Publication","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2014-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2014 ACM International Joint Conference on Pervasive and Ubiquitous Computing: Adjunct Publication","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2638728.2638809","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

Abstract

Many algorithms on health monitoring from ambient sensor networks assume that only a single person is present in the home. We present an unsupervised method that models visit behaviour. A Markov modulated multidimensional non-homogeneous Poisson process (M3P2) is described that allows us to model weekly and daily variations and to combine multiple data streams, namely the front-door sensor transitions and the general sensor transitions. The results from nine months of sensor data collected in the apartment of an elderly person show that our model outperforms the standard Markov modulated Poisson process (MMPP).
使用无监督学习对智能家居中的访问行为进行建模
许多基于环境传感器网络的健康监测算法都假设家中只有一个人。我们提出了一种无监督的方法来模拟访问行为。描述了一个马尔可夫调制的多维非齐次泊松过程(M3P2),它允许我们对每周和每天的变化进行建模,并结合多个数据流,即前门传感器转换和一般传感器转换。从一个老人的公寓中收集的9个月的传感器数据的结果表明,我们的模型优于标准的马尔可夫调制泊松过程(MMPP)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信