Classification on Boundary-Equilibria and Singular Continuums of Continuous Piecewise Linear Systems

Hebai Chen, Zhaosheng Feng, Hao Yang, Linfeng zhou
{"title":"Classification on Boundary-Equilibria and Singular Continuums of Continuous Piecewise Linear Systems","authors":"Hebai Chen, Zhaosheng Feng, Hao Yang, Linfeng zhou","doi":"10.1142/s0218127423500517","DOIUrl":null,"url":null,"abstract":"In this paper, we show that any switching hypersurface of [Formula: see text]-dimensional continuous piecewise linear systems is an [Formula: see text]-dimensional hyperplane. For two-dimensional continuous piecewise linear systems, we present local phase portraits and indices near the boundary equilibria (i.e. equilibria at the switching line) and singular continuum (i.e. continuum of nonisolated equilibria) between two parallel switching lines. The index of singular continuum is defined. Then we show that boundary-equilibria and singular continuums can appear with many parallel switching lines.","PeriodicalId":13688,"journal":{"name":"Int. J. Bifurc. Chaos","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Bifurc. Chaos","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0218127423500517","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we show that any switching hypersurface of [Formula: see text]-dimensional continuous piecewise linear systems is an [Formula: see text]-dimensional hyperplane. For two-dimensional continuous piecewise linear systems, we present local phase portraits and indices near the boundary equilibria (i.e. equilibria at the switching line) and singular continuum (i.e. continuum of nonisolated equilibria) between two parallel switching lines. The index of singular continuum is defined. Then we show that boundary-equilibria and singular continuums can appear with many parallel switching lines.
连续分段线性系统的边界平衡和奇异连续的分类
本文证明了[公式:见文]维连续分段线性系统的任意切换超平面是一个[公式:见文]维超平面。对于二维连续分段线性系统,我们给出了边界平衡点(即开关线上的平衡点)和两个平行开关线上的奇异连续统(即非孤立平衡的连续统)附近的局部相图和指标。定义了奇异连续统的指数。然后我们证明了边界平衡和奇异连续统可以在多个平行开关线下出现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信