Estimation of left-turning travel time at traffic intersection

Q4 Computer Science
Song BI, Zhi-jian WANG, Cun-wu HAN, De-hui SUN, Wei-feng ZHAI, Zhong-cheng ZHAO
{"title":"Estimation of left-turning travel time at traffic intersection","authors":"Song BI,&nbsp;Zhi-jian WANG,&nbsp;Cun-wu HAN,&nbsp;De-hui SUN,&nbsp;Wei-feng ZHAI,&nbsp;Zhong-cheng ZHAO","doi":"10.1016/S1005-8885(13)60257-5","DOIUrl":null,"url":null,"abstract":"<div><p>Traffic guidance is a promise approach of traffic congestion alleviation, and the travel time is one of the most important basic data for the reasonable and effective route planning which is the core of traffic guidance. The traffic intersection is one of the chief components of the whole traffic road networks, so the estimation of travel time of the intersection plays an important role in traffic guidance. This paper pays more attention to the estimation of travel time for left-turning lane connected to an intersection, introduces the features for travel time estimation, and designs an estimator based on the learning vector quantity (LVQ) neural network. A suite of reasonable test shows that the method can effectively estimate the travel time of vehicles at left-turning lane with lower error to the real data.</p></div>","PeriodicalId":35359,"journal":{"name":"Journal of China Universities of Posts and Telecommunications","volume":"20 ","pages":"Pages 10-14"},"PeriodicalIF":0.0000,"publicationDate":"2013-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S1005-8885(13)60257-5","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of China Universities of Posts and Telecommunications","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1005888513602575","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

Abstract

Traffic guidance is a promise approach of traffic congestion alleviation, and the travel time is one of the most important basic data for the reasonable and effective route planning which is the core of traffic guidance. The traffic intersection is one of the chief components of the whole traffic road networks, so the estimation of travel time of the intersection plays an important role in traffic guidance. This paper pays more attention to the estimation of travel time for left-turning lane connected to an intersection, introduces the features for travel time estimation, and designs an estimator based on the learning vector quantity (LVQ) neural network. A suite of reasonable test shows that the method can effectively estimate the travel time of vehicles at left-turning lane with lower error to the real data.

十字路口左转弯行驶时间的估计
交通诱导是缓解交通拥堵的一种很有前景的方法,而出行时间是进行合理有效的路线规划的最重要的基础数据之一,是交通诱导的核心。交通交叉口是整个交通路网的主要组成部分之一,交叉口通行时间的估计在交通诱导中起着重要的作用。本文重点研究了连接路口的左转车道行驶时间的估计问题,介绍了行驶时间估计的特征,设计了一种基于学习向量(LVQ)神经网络的估计器。一组合理的测试表明,该方法能有效地估计出车辆在左转弯车道的行驶时间,与实际数据的误差较小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.50
自引率
0.00%
发文量
1878
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信