Xuewei Feng, Yida Li, Lin Wang, Z. Yu, Shuai Chen, W. Tan, Nasiruddin Macadam, G. Hu, X. Gong, T. Hasan, Yong-Wei Zhang, A. Thean, K. Ang
{"title":"First Demonstration of a Fully-Printed Mos2Rram on Flexible Substrate with Ultra-Low Switching Voltage and its Application as Electronic Synapse","authors":"Xuewei Feng, Yida Li, Lin Wang, Z. Yu, Shuai Chen, W. Tan, Nasiruddin Macadam, G. Hu, X. Gong, T. Hasan, Yong-Wei Zhang, A. Thean, K. Ang","doi":"10.23919/VLSIT.2019.8776520","DOIUrl":null,"url":null,"abstract":"We demonstrate the first fully-printed resistive random access memory (RRAM) on flexible substrate using 2D layered dichalcogenides, exhibiting ultra-low switching voltage down to 0.18 V and an on/off ratio up to 107. The novel switching medium is printed by formulating multilayer molybdenum disulfide (MoS2) into 3D-printable ink. Both volatile and non-volatile resistive switching are achieved within a single device by varying current compliance, which enables the implementation of electronic synapse with neuromorphic functionality including short-term plasticity (STP) and long-term plasticity (LTP).","PeriodicalId":6752,"journal":{"name":"2019 Symposium on VLSI Technology","volume":"1 1","pages":"T88-T89"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Symposium on VLSI Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/VLSIT.2019.8776520","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11
Abstract
We demonstrate the first fully-printed resistive random access memory (RRAM) on flexible substrate using 2D layered dichalcogenides, exhibiting ultra-low switching voltage down to 0.18 V and an on/off ratio up to 107. The novel switching medium is printed by formulating multilayer molybdenum disulfide (MoS2) into 3D-printable ink. Both volatile and non-volatile resistive switching are achieved within a single device by varying current compliance, which enables the implementation of electronic synapse with neuromorphic functionality including short-term plasticity (STP) and long-term plasticity (LTP).