Deep correlations for texture synthesis

O. Sendik, D. Cohen-Or
{"title":"Deep correlations for texture synthesis","authors":"O. Sendik, D. Cohen-Or","doi":"10.1145/3072959.3126824","DOIUrl":null,"url":null,"abstract":"Example-based texture synthesis has been an active research problem for over two decades. Still, synthesizing textures with nonlocal structures remains a challenge. In this article, we present a texture synthesis technique that builds upon convolutional neural networks and extracted statistics of pretrained deep features. We introduce a structural energy, based on correlations among deep features, which capture the self-similarities and regularities characterizing the texture. Specifically, we show that our technique can synthesize textures that have structures of various scales, local and nonlocal, and the combination of the two.","PeriodicalId":7121,"journal":{"name":"ACM Trans. Graph.","volume":"68 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Trans. Graph.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3072959.3126824","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

Abstract

Example-based texture synthesis has been an active research problem for over two decades. Still, synthesizing textures with nonlocal structures remains a challenge. In this article, we present a texture synthesis technique that builds upon convolutional neural networks and extracted statistics of pretrained deep features. We introduce a structural energy, based on correlations among deep features, which capture the self-similarities and regularities characterizing the texture. Specifically, we show that our technique can synthesize textures that have structures of various scales, local and nonlocal, and the combination of the two.
纹理合成的深度相关性
基于实例的纹理合成是一个活跃的研究问题。然而,合成具有非局部结构的纹理仍然是一个挑战。在本文中,我们提出了一种基于卷积神经网络的纹理合成技术,并提取了预训练深度特征的统计数据。我们引入了一种结构能量,基于深层特征之间的相关性,捕捉纹理特征的自相似性和规律性。具体来说,我们表明我们的技术可以合成具有不同尺度、局部和非局部结构的纹理,以及两者的结合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信