Формирование методом молекулярно-пучковой эпитаксии с плазменной активацией азота гетероструктур с множественными квантовыми ямами InN/InGaN на сапфире

М.А. Калинников, Д.Н. Лобанов, К.Е. Кудрявцев, Б.А. Андреев, П.А. Юнин, Л. В. Красильникова, Андрей Викторович Новиков, Е. В. Скороходов, З. Ф. Красильник
{"title":"Формирование методом молекулярно-пучковой эпитаксии с плазменной активацией азота гетероструктур с множественными квантовыми ямами InN/InGaN на сапфире","authors":"М.А. Калинников, Д.Н. Лобанов, К.Е. Кудрявцев, Б.А. Андреев, П.А. Юнин, Л. В. Красильникова, Андрей Викторович Новиков, Е. В. Скороходов, З. Ф. Красильник","doi":"10.21883/ftp.2022.09.53403.38","DOIUrl":null,"url":null,"abstract":"The features of the process of growth of multilayer heterostructures with InN/InGaN quantum wells (QWs) by the method of molecular-beam epitaxy with nitrogen plasma activation in the mode of modulated metal fluxes are studied. To compensate for elastic stresses in the structure, the active region was formed in the form of an InN/InGaN superlattice matched over the average lattice parameter with the underlying InGaN buffer layer. It has been shown that during the growth of relatively narrow InN QWs up to 3 nm wide, there is no relaxation of elastic stresses in the active region of the structure, and the dislocation density remains at the level ND ∼ (3−4) · 10^10 cm−2, which corresponds to the dislocation density in InGaN buffer. Such structures demonstrate the most intense PL in the wavelength range of 1.3−1.5 µm. With the growth of wider QWs, the imperfection of the structures sharply increases (ND > 10^11 cm−2), which is accompanied by a decrease in the emission intensity. The structures grown with InN/InGaN QWs demonstrated an order of magnitude better temperature stability of PL compared to bulk InN layers (PL quenching by ∼ 3 and ∼ 25 times, respectively, in the temperature range of 77−300 K). Nevertheless, at a low temperature (T = 77 K), the PL intensity of the studied structures with InN/InGaN QWs is noticeably inferior to that for the bulk InN layer, which apparently indicates a significant role of nonradiative recombination by the Shockley−Reed−Hall mechanism in structures with QWs (as opposed to Auger recombination in bulk InN).","PeriodicalId":24054,"journal":{"name":"Физика и техника полупроводников","volume":"39 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Физика и техника полупроводников","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21883/ftp.2022.09.53403.38","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The features of the process of growth of multilayer heterostructures with InN/InGaN quantum wells (QWs) by the method of molecular-beam epitaxy with nitrogen plasma activation in the mode of modulated metal fluxes are studied. To compensate for elastic stresses in the structure, the active region was formed in the form of an InN/InGaN superlattice matched over the average lattice parameter with the underlying InGaN buffer layer. It has been shown that during the growth of relatively narrow InN QWs up to 3 nm wide, there is no relaxation of elastic stresses in the active region of the structure, and the dislocation density remains at the level ND ∼ (3−4) · 10^10 cm−2, which corresponds to the dislocation density in InGaN buffer. Such structures demonstrate the most intense PL in the wavelength range of 1.3−1.5 µm. With the growth of wider QWs, the imperfection of the structures sharply increases (ND > 10^11 cm−2), which is accompanied by a decrease in the emission intensity. The structures grown with InN/InGaN QWs demonstrated an order of magnitude better temperature stability of PL compared to bulk InN layers (PL quenching by ∼ 3 and ∼ 25 times, respectively, in the temperature range of 77−300 K). Nevertheless, at a low temperature (T = 77 K), the PL intensity of the studied structures with InN/InGaN QWs is noticeably inferior to that for the bulk InN layer, which apparently indicates a significant role of nonradiative recombination by the Shockley−Reed−Hall mechanism in structures with QWs (as opposed to Auger recombination in bulk InN).
蓝宝石上多量子坑的等离子体异质结构的分子束外延形成
研究了在调制金属通量模式下,用氮等离子体活化的分子束外延法生长具有InN/InGaN量子阱的多层异质结构的过程特点。为了补偿结构中的弹性应力,活性区以InN/InGaN超晶格的形式形成,其平均晶格参数与底层InGaN缓冲层相匹配。结果表明,在宽达3nm的相对窄的InN量子阱生长过程中,结构的活性区没有弹性应力的松弛,位错密度保持在ND ~(3−4)·10^10 cm−2的水平,与InGaN缓冲液中的位错密度相对应。这种结构在1.3 ~ 1.5µm波长范围内表现出最强烈的PL。随着量子阱宽度的增加,结构的不完美度急剧增加(ND > 10^11 cm−2),同时发射强度降低。用InN/InGaN QWs生长的结构,其PL的温度稳定性比本体InN层好一个数量级(在77 ~ 300 K的温度范围内,PL分别淬灭了~ 3倍和~ 25倍)。然而,在低温(T = 77 K)下,研究的InN/InGaN QWs结构的PL强度明显低于本体InN层。这显然表明,在具有量子阱的结构中,由Shockley - Reed - Hall机制进行的非辐射复合发挥了重要作用(与块状非量子阱中的俄歇复合相反)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信