Equilibration of energies in a two-dimensional harmonic graphene lattice

I. Berinskii, V. Kuzkin
{"title":"Equilibration of energies in a two-dimensional harmonic graphene lattice","authors":"I. Berinskii, V. Kuzkin","doi":"10.1098/rsta.2019.0114","DOIUrl":null,"url":null,"abstract":"We study dynamical phenomena in a harmonic graphene (honeycomb) lattice, consisting of equal particles connected by linear and angular springs. Equations of in-plane motion for the lattice are derived. Initial conditions typical for molecular dynamic modelling are considered. Particles have random initial velocities and zero displacements. In this case, the lattice is far from thermal equilibrium. In particular, initial kinetic and potential energies are not equal. Moreover, initial kinetic energies (and temperatures), corresponding to degrees of freedom of the unit cell, are generally different. The motion of particles leads to equilibration of kinetic and potential energies and redistribution of kinetic energy among degrees of freedom. During equilibration, the kinetic energy performs decaying high-frequency oscillations. We show that these oscillations are accurately described by an integral depending on dispersion relation and polarization matrix of the lattice. At large times, kinetic and potential energies tend to equal values. Kinetic energy is partially redistributed among degrees of freedom of the unit cell. Equilibrium distribution of the kinetic energies is accurately predicted by the non-equipartition theorem. Presented results may serve for better understanding of the approach to thermal equilibrium in graphene. This article is part of the theme issue ‘Modelling of dynamic phenomena and localization in structured media (part 2)’.","PeriodicalId":20020,"journal":{"name":"Philosophical Transactions of the Royal Society A","volume":"17 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Philosophical Transactions of the Royal Society A","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1098/rsta.2019.0114","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

We study dynamical phenomena in a harmonic graphene (honeycomb) lattice, consisting of equal particles connected by linear and angular springs. Equations of in-plane motion for the lattice are derived. Initial conditions typical for molecular dynamic modelling are considered. Particles have random initial velocities and zero displacements. In this case, the lattice is far from thermal equilibrium. In particular, initial kinetic and potential energies are not equal. Moreover, initial kinetic energies (and temperatures), corresponding to degrees of freedom of the unit cell, are generally different. The motion of particles leads to equilibration of kinetic and potential energies and redistribution of kinetic energy among degrees of freedom. During equilibration, the kinetic energy performs decaying high-frequency oscillations. We show that these oscillations are accurately described by an integral depending on dispersion relation and polarization matrix of the lattice. At large times, kinetic and potential energies tend to equal values. Kinetic energy is partially redistributed among degrees of freedom of the unit cell. Equilibrium distribution of the kinetic energies is accurately predicted by the non-equipartition theorem. Presented results may serve for better understanding of the approach to thermal equilibrium in graphene. This article is part of the theme issue ‘Modelling of dynamic phenomena and localization in structured media (part 2)’.
二维谐波石墨烯晶格中的能量平衡
我们研究了谐波石墨烯(蜂窝)晶格中的动力学现象,该晶格由线性和角弹簧连接的等粒子组成。导出了晶格的平面内运动方程。考虑了分子动力学建模的典型初始条件。粒子有随机的初始速度和零位移。在这种情况下,晶格远没有达到热平衡。特别是,初始动能和势能是不相等的。此外,初始动能(和温度),对应的自由度的单位胞,一般是不同的。粒子的运动导致动能和势能的平衡以及动能在不同自由度之间的重新分布。在平衡过程中,动能进行衰减的高频振荡。我们证明了这些振荡可以用一个依赖于晶格色散关系和极化矩阵的积分来精确描述。在大的时候,动能和势能趋于相等。动能部分地在单元胞的自由度之间重新分配。用非均分定理准确地预测了动能的平衡分布。所提出的结果可能有助于更好地理解石墨烯中热平衡的方法。本文是主题“结构化媒体中动态现象的建模和定位(第二部分)”的一部分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信