Real, tight frames with maximal robustness to erasures

Markus Püschel, J. Kovacevic
{"title":"Real, tight frames with maximal robustness to erasures","authors":"Markus Püschel, J. Kovacevic","doi":"10.1109/DCC.2005.77","DOIUrl":null,"url":null,"abstract":"Motivated by the use of frames for robust transmission over the Internet, we present a first systematic construction of real tight frames with maximum robustness to erasures. We approach the problem in steps: we first construct maximally robust frames by using polynomial transforms. We then add tightness as an additional property with the help of orthogonal polynomials. Finally, we impose the last requirement of equal norm and construct, to our best knowledge, the first real, tight, equal-norm frames maximally robust to erasures.","PeriodicalId":91161,"journal":{"name":"Proceedings. Data Compression Conference","volume":"67 1","pages":"63-72"},"PeriodicalIF":0.0000,"publicationDate":"2005-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"90","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. Data Compression Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DCC.2005.77","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 90

Abstract

Motivated by the use of frames for robust transmission over the Internet, we present a first systematic construction of real tight frames with maximum robustness to erasures. We approach the problem in steps: we first construct maximally robust frames by using polynomial transforms. We then add tightness as an additional property with the help of orthogonal polynomials. Finally, we impose the last requirement of equal norm and construct, to our best knowledge, the first real, tight, equal-norm frames maximally robust to erasures.
对擦除具有最大鲁棒性的真实、紧密的帧
在使用帧在互联网上进行鲁棒传输的激励下,我们提出了第一个具有最大鲁棒性的真实紧帧的系统构造。我们分步骤解决这个问题:我们首先使用多项式变换构造最大鲁棒帧。然后我们在正交多项式的帮助下增加紧性作为一个额外的性质。最后,我们提出了等范数的最后一个要求,并构造了,据我们所知,第一个真正的,紧密的,对擦除具有最大鲁棒性的等范数框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信