{"title":"Effect of Nandrolone Treatment with And Without Resistance Training on Superoxide Dismutase Concentration and Pathology of Kidney Tissue in Rats","authors":"E. Heidari, S. Hosseini, M. Azarbayjani","doi":"10.5812/jcrps.102497","DOIUrl":null,"url":null,"abstract":"Background: The prevalence of anabolic steroids abuse in athletes and non-athletes is associated with the risk of injury to various organs, but there are limited studies of oxidative changes in kidney tissue following nandrolone (N) administration. Objectives: the aim of this study was to investigate the effect of N treatment with and without resistance training (RT) on superoxide dismutase (SOD) concentration and tissue pathology of kidney tissue in rats. Methods: In this experimental study, 20 male Wistar rats were randomly divided into four groups of five rats including 1) control (C), 2) sham (normal saline) (Sh), 3) N, and 4) N + RT. Groups 3 and 4 received 10 mg/kg N peritoneally, and the N + RT group performed 1 m ladder climbing for eight weeks and three sessions per week. SOD levels of kidney tissue were measured by ELISA and radioimmunoassay. Hematoxylin-eosin (H&E) staining was used to evaluate oxidative stress levels in kidney tissue. One-way ANOVA with Bonferroni’s post- hoc tests were used for analysis of research findings in SPSS version 22 (P ≤ 0.05). Results: SOD levels in the C group were higher than the Sh (P = 0.001), N (P = 0.001), and N + RT (P = 0.001) groups. SOD levels were lower in the Sh group than in the N (P = 0.049) and N + RT (P = 0.001) groups. However, there was no significant difference in SOD levels in the N + RT group and N group (P = 0.28). Also, oxidative stress levels were normal in tissue studies in all groups. Conclusions: It seems that Ntreatment with and without RT reduces SOD activity in kidney tissue, but more studies are needed in this regard given the normality of tissue oxidative stress results.","PeriodicalId":15586,"journal":{"name":"Journal of Clinical Research","volume":"30 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Clinical Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.5812/jcrps.102497","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Background: The prevalence of anabolic steroids abuse in athletes and non-athletes is associated with the risk of injury to various organs, but there are limited studies of oxidative changes in kidney tissue following nandrolone (N) administration. Objectives: the aim of this study was to investigate the effect of N treatment with and without resistance training (RT) on superoxide dismutase (SOD) concentration and tissue pathology of kidney tissue in rats. Methods: In this experimental study, 20 male Wistar rats were randomly divided into four groups of five rats including 1) control (C), 2) sham (normal saline) (Sh), 3) N, and 4) N + RT. Groups 3 and 4 received 10 mg/kg N peritoneally, and the N + RT group performed 1 m ladder climbing for eight weeks and three sessions per week. SOD levels of kidney tissue were measured by ELISA and radioimmunoassay. Hematoxylin-eosin (H&E) staining was used to evaluate oxidative stress levels in kidney tissue. One-way ANOVA with Bonferroni’s post- hoc tests were used for analysis of research findings in SPSS version 22 (P ≤ 0.05). Results: SOD levels in the C group were higher than the Sh (P = 0.001), N (P = 0.001), and N + RT (P = 0.001) groups. SOD levels were lower in the Sh group than in the N (P = 0.049) and N + RT (P = 0.001) groups. However, there was no significant difference in SOD levels in the N + RT group and N group (P = 0.28). Also, oxidative stress levels were normal in tissue studies in all groups. Conclusions: It seems that Ntreatment with and without RT reduces SOD activity in kidney tissue, but more studies are needed in this regard given the normality of tissue oxidative stress results.