Air-Water Flow Properties in Hydraulic Jumps With Fully and Partially Developed Inflow Conditions

IF 1.8 3区 工程技术 Q3 ENGINEERING, MECHANICAL
L. Montano, S. Felder
{"title":"Air-Water Flow Properties in Hydraulic Jumps With Fully and Partially Developed Inflow Conditions","authors":"L. Montano, S. Felder","doi":"10.1115/1.4051199","DOIUrl":null,"url":null,"abstract":"\n Novel air–water flow measurements were conducted in fully aerated hydraulic jumps with partially and fully developed supercritical inflow conditions. Irrespective of the inflow conditions, the hydraulic jumps resembled typical flow patterns with strong aeration and instabilities, albeit hydraulic jumps with fully developed inflow conditions had a more upward directed roller motion and a larger clear water core in the second half of the roller. Hydraulic jumps with fully developed inflow conditions had comparatively larger void fractions in the first half of the jump roller and larger bubble count rates throughout, while a comparatively larger number of smaller bubble sizes suggested a stronger break-up of bubbles. This was consistent with slightly larger interfacial velocities and turbulence intensities in the first half of the jump roller with fully developed inflow conditions. An assessment of the required sampling duration for air–water flow properties indicated the requirement to sample for at least five times longer than applied in previous studies. These results highlighted the need to carefully consider the inflow conditions and sampling parameters for aerated hydraulic jumps.","PeriodicalId":54833,"journal":{"name":"Journal of Fluids Engineering-Transactions of the Asme","volume":"1 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fluids Engineering-Transactions of the Asme","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4051199","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 9

Abstract

Novel air–water flow measurements were conducted in fully aerated hydraulic jumps with partially and fully developed supercritical inflow conditions. Irrespective of the inflow conditions, the hydraulic jumps resembled typical flow patterns with strong aeration and instabilities, albeit hydraulic jumps with fully developed inflow conditions had a more upward directed roller motion and a larger clear water core in the second half of the roller. Hydraulic jumps with fully developed inflow conditions had comparatively larger void fractions in the first half of the jump roller and larger bubble count rates throughout, while a comparatively larger number of smaller bubble sizes suggested a stronger break-up of bubbles. This was consistent with slightly larger interfacial velocities and turbulence intensities in the first half of the jump roller with fully developed inflow conditions. An assessment of the required sampling duration for air–water flow properties indicated the requirement to sample for at least five times longer than applied in previous studies. These results highlighted the need to carefully consider the inflow conditions and sampling parameters for aerated hydraulic jumps.
完全和部分发展入流条件下液压跃变中的空气-水流动特性
在完全加气的水力跳跃条件下,在部分和完全发展的超临界流入条件下进行了新型的空气-水流量测量。无论入流条件如何,水力跳变都类似于典型的流型,具有强通气和不稳定性,尽管在充分发展的入流条件下,水力跳变具有更多向上定向的滚轮运动,并且在滚轮的后半部分具有更大的清澈水芯。在充分发展的入流条件下,液压跃变在跃变滚轮的前半段具有较大的空隙分数和较大的气泡计数率,而相对较多的小气泡尺寸则表明气泡破碎更强。这与跳跃滚轮前半部分的界面速度和湍流强度略大的情况是一致的,并且流入条件完全发达。对空气-水流动特性所需采样时间的评估表明,需要的采样时间至少比以前的研究长五倍。这些结果强调了需要仔细考虑入流条件和充气液压跳井的采样参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.60
自引率
10.00%
发文量
165
审稿时长
5.0 months
期刊介绍: Multiphase flows; Pumps; Aerodynamics; Boundary layers; Bubbly flows; Cavitation; Compressible flows; Convective heat/mass transfer as it is affected by fluid flow; Duct and pipe flows; Free shear layers; Flows in biological systems; Fluid-structure interaction; Fluid transients and wave motion; Jets; Naval hydrodynamics; Sprays; Stability and transition; Turbulence wakes microfluidics and other fundamental/applied fluid mechanical phenomena and processes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信