A Simple and Accurate Relation Between the Logarithm Integral Li(x) and the Primes Counting Function π(x) is Derived Making use of the O.E.I.S. Prime Numbers “Sequences”

IF 0.3 Q4 MATHEMATICS
P. Ascarelli
{"title":"A Simple and Accurate Relation Between the Logarithm Integral Li(x) and the Primes Counting Function π(x) is Derived Making use of the O.E.I.S. Prime Numbers “Sequences”","authors":"P. Ascarelli","doi":"10.3844/jmssp.2021.59.60","DOIUrl":null,"url":null,"abstract":"Email: ascarelli.p@gmail.com Abstract: Today the prime numbers π(x) contained under the number x appears to be somewhat overestimated by the logarithm integral function Li(x) and underestimated by the function x/ln(x), both originally proposed by Gauss around 1792-1796. However, a simple and accurate expression, relating Li(x) and π(x), may be derived using the data reported on the O.E.I.S. “Sequences”. This relation can also suggest the possibility that for very big numbers the Li(x) may oscillate around π(x).","PeriodicalId":41981,"journal":{"name":"Jordan Journal of Mathematics and Statistics","volume":"28 1","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jordan Journal of Mathematics and Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3844/jmssp.2021.59.60","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Email: ascarelli.p@gmail.com Abstract: Today the prime numbers π(x) contained under the number x appears to be somewhat overestimated by the logarithm integral function Li(x) and underestimated by the function x/ln(x), both originally proposed by Gauss around 1792-1796. However, a simple and accurate expression, relating Li(x) and π(x), may be derived using the data reported on the O.E.I.S. “Sequences”. This relation can also suggest the possibility that for very big numbers the Li(x) may oscillate around π(x).
利用O.E.I.S.素数“数列”导出了对数积分Li(x)与素数计数函数π(x)的简单精确关系
摘要:今天,包含在数x下的质数π(x)似乎被对数积分函数Li(x)高估了,而被函数x/ln(x)低估了,这两个函数最初是由高斯在1792-1796年左右提出的。然而,一个简单而准确的表达式,Li(x)和π(x)之间的关系,可以使用在O.E.I.S.“序列”中报告的数据推导出来。这种关系也表明,对于非常大的数,Li(x)可能会在π(x)周围振荡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.70
自引率
33.30%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信