Alexandros Doumanoglou, N. Zioulis, Emmanouil Christakis, D. Zarpalas, P. Daras
{"title":"Subjective quality assessment of textured human full-body 3D-reconstructions","authors":"Alexandros Doumanoglou, N. Zioulis, Emmanouil Christakis, D. Zarpalas, P. Daras","doi":"10.1109/qomex.2018.8463385","DOIUrl":null,"url":null,"abstract":"Geometry and texture resolution are two common system parameters of any modern volumetric 3D reconstruction pipeline. In tele-immersive applications, besides their apparent impact on the visual quality of the output 3D mesh, their absolute values implicitly influence the computational load of the whole tele-immersion pipeline from acquisition to 3D reconstruction, compression and transmission. Thus, tuning those parameters to an optimal combination has evident benefits. In this paper, we conduct a subjective experiment to assess the visual quality of textured human 3D-reconstructed meshes that are produced by a volumetric 3D reconstruction algorithm as a joint function of the geometry and texture resolution production parameters. The experiment is based on the forced choice pairwise comparison methodology on pre-rendered views of the real-time reconstructed meshes within the context of human performance capture. We analyze the pairwise comparison data and establish a ranking of the parameter space and, thus also, a mapping from the parameters to the subjective visual quality. The results of this study may be utilized to tune the parameters of the real-time 3D reconstruction pipeline, optimizing for the best balance between visual quality, bandwidth and overall performance.","PeriodicalId":6618,"journal":{"name":"2018 Tenth International Conference on Quality of Multimedia Experience (QoMEX)","volume":"37 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Tenth International Conference on Quality of Multimedia Experience (QoMEX)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/qomex.2018.8463385","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
Geometry and texture resolution are two common system parameters of any modern volumetric 3D reconstruction pipeline. In tele-immersive applications, besides their apparent impact on the visual quality of the output 3D mesh, their absolute values implicitly influence the computational load of the whole tele-immersion pipeline from acquisition to 3D reconstruction, compression and transmission. Thus, tuning those parameters to an optimal combination has evident benefits. In this paper, we conduct a subjective experiment to assess the visual quality of textured human 3D-reconstructed meshes that are produced by a volumetric 3D reconstruction algorithm as a joint function of the geometry and texture resolution production parameters. The experiment is based on the forced choice pairwise comparison methodology on pre-rendered views of the real-time reconstructed meshes within the context of human performance capture. We analyze the pairwise comparison data and establish a ranking of the parameter space and, thus also, a mapping from the parameters to the subjective visual quality. The results of this study may be utilized to tune the parameters of the real-time 3D reconstruction pipeline, optimizing for the best balance between visual quality, bandwidth and overall performance.