{"title":"On the tensor rank of the 3 x 3 permanent and determinant","authors":"Siddharth Krishna, V. Makam","doi":"10.13001/ELA.2021.5107","DOIUrl":null,"url":null,"abstract":"The tensor rank and border rank of the $3 \\times 3$ determinant tensor are known to be $5$ if the characteristic is not two. In characteristic two, the existing proofs of both the upper and lower bounds fail. In this paper, we show that the tensor rank remains $5$ for fields of characteristic two as well.","PeriodicalId":50540,"journal":{"name":"Electronic Journal of Linear Algebra","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2021-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Linear Algebra","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.13001/ELA.2021.5107","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 2
Abstract
The tensor rank and border rank of the $3 \times 3$ determinant tensor are known to be $5$ if the characteristic is not two. In characteristic two, the existing proofs of both the upper and lower bounds fail. In this paper, we show that the tensor rank remains $5$ for fields of characteristic two as well.
期刊介绍:
The journal is essentially unlimited by size. Therefore, we have no restrictions on length of articles. Articles are submitted electronically. Refereeing of articles is conventional and of high standards. Posting of articles is immediate following acceptance, processing and final production approval.