Divisibility Parameters and the Degree of Kummer Extensions of Number Fields

Antonella Perucca, Pietro Sgobba, S. Tronto
{"title":"Divisibility Parameters and the Degree of Kummer Extensions of Number Fields","authors":"Antonella Perucca, Pietro Sgobba, S. Tronto","doi":"10.2478/udt-2021-0008","DOIUrl":null,"url":null,"abstract":"Abstract Let K be a number field, and let ℓ be a prime number. Fix some elements α1,...,αr of K× which generate a subgroup of K× of rank r. Let n1,...,nr, m be positive integers with m ⩾ ni for every i. We show that there exist computable parametric formulas (involving only a finite case distinction) to express the degree of the Kummer extension K(ζℓm, α1ℓn1,…,αrℓnr \\root {{\\ell ^{{n_1}}}} \\of {{\\alpha _1}} , \\ldots ,\\root {{\\ell ^{{n_r}}}} \\of {{\\alpha _r}} ) over K(ζℓm) for all n1,..., nr, m. This is achieved with a new method with respect to a previous work, namely we determine explicit formulas for the divisibility parameters which come into play.","PeriodicalId":23390,"journal":{"name":"Uniform distribution theory","volume":"82 1","pages":"71 - 88"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Uniform distribution theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/udt-2021-0008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract Let K be a number field, and let ℓ be a prime number. Fix some elements α1,...,αr of K× which generate a subgroup of K× of rank r. Let n1,...,nr, m be positive integers with m ⩾ ni for every i. We show that there exist computable parametric formulas (involving only a finite case distinction) to express the degree of the Kummer extension K(ζℓm, α1ℓn1,…,αrℓnr \root {{\ell ^{{n_1}}}} \of {{\alpha _1}} , \ldots ,\root {{\ell ^{{n_r}}}} \of {{\alpha _r}} ) over K(ζℓm) for all n1,..., nr, m. This is achieved with a new method with respect to a previous work, namely we determine explicit formulas for the divisibility parameters which come into play.
数域的可分性参数与Kummer扩展的度
摘要设K是一个数域,设r是一个素数。修复一些元素α1,…,αr (kx)生成秩为r的kx子群,设n1,…,nr, m是每个i的m大于或等于ni的正整数。我们表明存在可计算的参数公式(仅涉及有限情况区别)来表示Kummer扩展K(ζ ζ m, α1∑n1,…,αr∑nr \root {{\ell ^{n_1}}}} \of {{\ α _1}},\ ldots,\root {{\ell ^{{n_r}}}} \of {{\ α _r}})在K(ζ∑m)上的所有n1,…这是通过一种相对于先前工作的新方法实现的,即我们确定了起作用的可整除性参数的显式公式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信