{"title":"Experimental Investigation of the Continuous Transition of Flame-Spreading near the Blow-Off Limit","authors":"K. Komizu, Y. Saito, A. Tsuji, H. Nagata","doi":"10.1155/2020/3187694","DOIUrl":null,"url":null,"abstract":"This study investigates the continuous transition from flame-spreading to stabilized combustion near the blow-off limit in opposed forced flow by using expanding solid fuel duct that makes distribution of oxidizer velocity in the axial direction. The stabilized combustion is a diffusion flame that appears in the Axial-Injection End-Burning Hybrid Rocket. The boundary between flame-spreading and stabilized combustion has not been investigated in detail. Polymethyl methacrylate (PMMA) rectangular ducts were used as a fuel, and gaseous oxygen was used as an oxidizer. All firing tests were conducted at atmospheric pressure. The diffusion flame traveled in the opposed-flow field where the oxidizer velocity increases continuously in the upstream direction. The combustion mode changed when oxidizer velocity at the flame tip exceeded a certain value. The oxidizer velocity used in this experiment ranges from 0.6 to 32.8 m/s. Experimental results show that a threshold oxidizer velocity of the transition can be determined. In this study, the threshold velocity was 26.4 m/s.","PeriodicalId":44364,"journal":{"name":"Journal of Combustion","volume":"49 1","pages":"1-7"},"PeriodicalIF":1.5000,"publicationDate":"2020-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combustion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2020/3187694","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 1
Abstract
This study investigates the continuous transition from flame-spreading to stabilized combustion near the blow-off limit in opposed forced flow by using expanding solid fuel duct that makes distribution of oxidizer velocity in the axial direction. The stabilized combustion is a diffusion flame that appears in the Axial-Injection End-Burning Hybrid Rocket. The boundary between flame-spreading and stabilized combustion has not been investigated in detail. Polymethyl methacrylate (PMMA) rectangular ducts were used as a fuel, and gaseous oxygen was used as an oxidizer. All firing tests were conducted at atmospheric pressure. The diffusion flame traveled in the opposed-flow field where the oxidizer velocity increases continuously in the upstream direction. The combustion mode changed when oxidizer velocity at the flame tip exceeded a certain value. The oxidizer velocity used in this experiment ranges from 0.6 to 32.8 m/s. Experimental results show that a threshold oxidizer velocity of the transition can be determined. In this study, the threshold velocity was 26.4 m/s.