N. B. Ngang, B. Kazeem, U. Ikechukwu, Aneke Nnamere Ezekiel
{"title":"Improving Loss Minimization in 33kv Power Distribution Network Using Optimized Genetic Algorithm","authors":"N. B. Ngang, B. Kazeem, U. Ikechukwu, Aneke Nnamere Ezekiel","doi":"10.11648/j.ijse.20210501.15","DOIUrl":null,"url":null,"abstract":"The epileptic power supply from the national grid due to instability is a concern to energy consumer. This instability in power supply experienced in power distribution network could be minimized by introducing Optimized Genetic Algorithm (OGA). It is achieved by characterizing 33KV distribution network, running the load flow of the characterized 33KV distribution network, determining the distribution losses from the load flow. Minimizing the determined losses in 33kv distribution network using (OGA), and designing SIMULINK model for improving loss minimization in 33kv power distribution network using OGA. Finally, validating and justifying the percentage of loss reduction in improving loss minimization in 33kv power distribution network without and with OGA. The results obtained are conventional percentage power loss in 33KV distribution network, 75%, while that when OGA is incorporated in the system is 72.9%. With these results obtained, the percentage improvement in loss reduction in 33KV distribution network when OGA is used is 2.1%. The conventional percentage of power loss in 33KV distribution network is 80%. The percentage power loss in the distribution network now is 72.9%; hence, power loss reduction in distribution network. Unmitigated power loss was 76.7% when OGA is introduced we had 74.63%. The percentage power loss in distribution network in bus 8 is 81.7% while that when OGA is applied is 79.49%. The percentage power loss in bus 9 of 33KV distribution network is 86.7%. Finally, when optimized genetic algorithm is incorporated in the system the percentage power loss in the network was reduced to 84.36%.","PeriodicalId":14477,"journal":{"name":"International Journal of Systems Engineering","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Systems Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11648/j.ijse.20210501.15","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The epileptic power supply from the national grid due to instability is a concern to energy consumer. This instability in power supply experienced in power distribution network could be minimized by introducing Optimized Genetic Algorithm (OGA). It is achieved by characterizing 33KV distribution network, running the load flow of the characterized 33KV distribution network, determining the distribution losses from the load flow. Minimizing the determined losses in 33kv distribution network using (OGA), and designing SIMULINK model for improving loss minimization in 33kv power distribution network using OGA. Finally, validating and justifying the percentage of loss reduction in improving loss minimization in 33kv power distribution network without and with OGA. The results obtained are conventional percentage power loss in 33KV distribution network, 75%, while that when OGA is incorporated in the system is 72.9%. With these results obtained, the percentage improvement in loss reduction in 33KV distribution network when OGA is used is 2.1%. The conventional percentage of power loss in 33KV distribution network is 80%. The percentage power loss in the distribution network now is 72.9%; hence, power loss reduction in distribution network. Unmitigated power loss was 76.7% when OGA is introduced we had 74.63%. The percentage power loss in distribution network in bus 8 is 81.7% while that when OGA is applied is 79.49%. The percentage power loss in bus 9 of 33KV distribution network is 86.7%. Finally, when optimized genetic algorithm is incorporated in the system the percentage power loss in the network was reduced to 84.36%.