Efficient Image Dehazing with Boundary Constraint and Contextual Regularization

Gaofeng Meng, Ying Wang, Jiangyong Duan, Shiming Xiang, Chunhong Pan
{"title":"Efficient Image Dehazing with Boundary Constraint and Contextual Regularization","authors":"Gaofeng Meng, Ying Wang, Jiangyong Duan, Shiming Xiang, Chunhong Pan","doi":"10.1109/ICCV.2013.82","DOIUrl":null,"url":null,"abstract":"Images captured in foggy weather conditions often suffer from bad visibility. In this paper, we propose an efficient regularization method to remove hazes from a single input image. Our method benefits much from an exploration on the inherent boundary constraint on the transmission function. This constraint, combined with a weighted L1-norm based contextual regularization, is modeled into an optimization problem to estimate the unknown scene transmission. A quite efficient algorithm based on variable splitting is also presented to solve the problem. The proposed method requires only a few general assumptions and can restore a high-quality haze-free image with faithful colors and fine image details. Experimental results on a variety of haze images demonstrate the effectiveness and efficiency of the proposed method.","PeriodicalId":6351,"journal":{"name":"2013 IEEE International Conference on Computer Vision","volume":"11 1","pages":"617-624"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"897","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Conference on Computer Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2013.82","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 897

Abstract

Images captured in foggy weather conditions often suffer from bad visibility. In this paper, we propose an efficient regularization method to remove hazes from a single input image. Our method benefits much from an exploration on the inherent boundary constraint on the transmission function. This constraint, combined with a weighted L1-norm based contextual regularization, is modeled into an optimization problem to estimate the unknown scene transmission. A quite efficient algorithm based on variable splitting is also presented to solve the problem. The proposed method requires only a few general assumptions and can restore a high-quality haze-free image with faithful colors and fine image details. Experimental results on a variety of haze images demonstrate the effectiveness and efficiency of the proposed method.
基于边界约束和上下文正则化的高效图像去雾
在多雾的天气条件下拍摄的图像往往受到能见度差的影响。在本文中,我们提出了一种有效的正则化方法来去除单个输入图像中的模糊。我们的方法得益于对传输函数固有边界约束的探索。该约束与基于l1范数的加权上下文正则化相结合,被建模为一个优化问题来估计未知场景传输。提出了一种基于变量分割的高效算法来解决这一问题。该方法只需要几个一般的假设,就可以恢复出具有忠实色彩和精细图像细节的高质量无雾图像。在多种雾霾图像上的实验结果验证了该方法的有效性和高效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信