Super Resolution with Sparse Gradient-Guided Attention for Suppressing Structural Distortion

Geonhak Song, Tien-Dung Nguyen, J. Bum, Hwijong Yi, C. Son, Hyunseung Choo
{"title":"Super Resolution with Sparse Gradient-Guided Attention for Suppressing Structural Distortion","authors":"Geonhak Song, Tien-Dung Nguyen, J. Bum, Hwijong Yi, C. Son, Hyunseung Choo","doi":"10.1109/ICMLA52953.2021.00146","DOIUrl":null,"url":null,"abstract":"Generative adversarial network (GAN)-based methods recover perceptually pleasant details in super resolution (SR), but they pertain to structural distortions. Recent study alleviates such structural distortions by attaching a gradient branch to the generator. However, this method compromises the perceptual details. In this paper, we propose a sparse gradient-guided attention generative adversarial network (SGAGAN), which incorporates a modified residual-in-residual sparse block (MRRSB) in the gradient branch and gradient-guided self-attention (GSA) to suppress structural distortions. Compared to the most frequently used block in GAN-based SR methods, i.e., residual-in-residual dense block (RRDB), MRRSB reduces computational cost and avoids gradient redundancy. In addition, GSA emphasizes the highly correlated features in the generator by guiding sparse gradient. It captures the semantic information by connecting the global interdependencies of the sparse gradient features in the gradient branch and the features in the SR branch. Experimental results show that SGAGAN relieves the structural distortions and generates more realistic images compared to state-of-the-art SR methods. Qualitative and quantitative evaluations in the ablation study show that combining GSA and MRRSB together has a better perceptual quality than combining self-attention alone.","PeriodicalId":6750,"journal":{"name":"2021 20th IEEE International Conference on Machine Learning and Applications (ICMLA)","volume":"104 1","pages":"885-890"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 20th IEEE International Conference on Machine Learning and Applications (ICMLA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA52953.2021.00146","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Generative adversarial network (GAN)-based methods recover perceptually pleasant details in super resolution (SR), but they pertain to structural distortions. Recent study alleviates such structural distortions by attaching a gradient branch to the generator. However, this method compromises the perceptual details. In this paper, we propose a sparse gradient-guided attention generative adversarial network (SGAGAN), which incorporates a modified residual-in-residual sparse block (MRRSB) in the gradient branch and gradient-guided self-attention (GSA) to suppress structural distortions. Compared to the most frequently used block in GAN-based SR methods, i.e., residual-in-residual dense block (RRDB), MRRSB reduces computational cost and avoids gradient redundancy. In addition, GSA emphasizes the highly correlated features in the generator by guiding sparse gradient. It captures the semantic information by connecting the global interdependencies of the sparse gradient features in the gradient branch and the features in the SR branch. Experimental results show that SGAGAN relieves the structural distortions and generates more realistic images compared to state-of-the-art SR methods. Qualitative and quantitative evaluations in the ablation study show that combining GSA and MRRSB together has a better perceptual quality than combining self-attention alone.
基于稀疏梯度引导注意力的超分辨率结构畸变抑制
基于生成对抗网络(GAN)的方法在超分辨率(SR)中恢复感知愉悦的细节,但它们适用于结构扭曲。最近的研究通过在发电机上附加一个梯度支路来减轻这种结构扭曲。然而,这种方法损害了感知细节。本文提出了一种稀疏梯度引导注意力生成对抗网络(SGAGAN),该网络在梯度分支中引入了改进的残差稀疏块(MRRSB)和梯度引导自注意(GSA)来抑制结构扭曲。与基于gan的SR方法中最常用的块即残差密集块(RRDB)相比,MRRSB降低了计算成本并避免了梯度冗余。此外,GSA通过引导稀疏梯度来强调生成器中高度相关的特征。它通过连接梯度分支中的稀疏梯度特征和SR分支中的特征的全局相互依赖关系来捕获语义信息。实验结果表明,与目前最先进的SR方法相比,sagan减轻了结构扭曲,生成的图像更真实。消融研究的定性和定量评价表明,GSA和MRRSB联合使用比单独使用自我注意具有更好的感知质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信