Exponential meshes and H-matrices

Niklas Angleitner, M. Faustmann, J. Melenk
{"title":"Exponential meshes and H-matrices","authors":"Niklas Angleitner, M. Faustmann, J. Melenk","doi":"10.48550/arXiv.2203.09925","DOIUrl":null,"url":null,"abstract":". In [AFM21a], we proved that the inverse of the stiffness matrix of an h -version finite element method (FEM) applied to scalar second order elliptic boundary value problems can be approximated at an exponential rate in the block rank by H -matrices. Here, we improve on this result in multiple ways: (1) The class of meshes is significantly enlarged and includes certain exponentially graded meshes. (2) The dependence on the polynomial degree p of the discrete ansatz space is made explicit in our analysis. (3) The bound for the approximation error is sharpened, and (4) the proof is simplified.","PeriodicalId":10572,"journal":{"name":"Comput. Math. Appl.","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comput. Math. Appl.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2203.09925","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

. In [AFM21a], we proved that the inverse of the stiffness matrix of an h -version finite element method (FEM) applied to scalar second order elliptic boundary value problems can be approximated at an exponential rate in the block rank by H -matrices. Here, we improve on this result in multiple ways: (1) The class of meshes is significantly enlarged and includes certain exponentially graded meshes. (2) The dependence on the polynomial degree p of the discrete ansatz space is made explicit in our analysis. (3) The bound for the approximation error is sharpened, and (4) the proof is simplified.
指数网格和h矩阵
。在[AFM21a]中,我们证明了用于标量二阶椭圆型边值问题的h型有限元法的刚度矩阵逆可以用h -矩阵在块阶上以指数速率逼近。在这里,我们通过多种方式改进了这一结果:(1)网格的类别显着扩大,并包括某些指数级分级网格。(2)在我们的分析中明确了离散方差空间对多项式次p的依赖性。(3)锐化了近似误差的界;(4)简化了证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信