{"title":"Lipase as Biocatalyst- for Synthesis of Phenol by Using Box–Behnken Design","authors":"","doi":"10.1080/10406638.2023.2247123","DOIUrl":null,"url":null,"abstract":"<div><p>This work highlighted the proficient and naturally safe methodology for the phenol synthesis using biocatalyst lipase. The development of sustainable synthetic protocol for various organic transformations is an important area of research attracts researchers to avoid use of volatile and hazardous organic solvents in reaction for greener and eco-friendly protocols. Lipase is subclass of esterase enzymes and acts as biocatalyst with industrial significance. They carry out biochemical transformation in non-aqueous and aqueous phases quickly. To further make the process more specific Design Expert software was used for the optimization of synthesize phenol for maximum % Yield and % Purity. Effect of temperature, Concentration of Catalyst, and Volume of Water was selected as an independent factor to get the maximum % Yield and % Purity of the phenol. The results confirmed the mathematical model robustness and justify experimental design. Therefore, the current protocol for synthesis of phenols from phenylboronic acid is greenest and environmentally benign alternative. The current convention has many benefits, like phenomenal product yields, reduced time of reaction, simple procedure to work up, and extensive substrate scope, cost-effective and also lipase was recuperated and reused multiple times without significant loss of its catalytic activity.</p></div>","PeriodicalId":20303,"journal":{"name":"Polycyclic Aromatic Compounds","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polycyclic Aromatic Compounds","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S1040663823019814","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ORGANIC","Score":null,"Total":0}
引用次数: 0
Abstract
This work highlighted the proficient and naturally safe methodology for the phenol synthesis using biocatalyst lipase. The development of sustainable synthetic protocol for various organic transformations is an important area of research attracts researchers to avoid use of volatile and hazardous organic solvents in reaction for greener and eco-friendly protocols. Lipase is subclass of esterase enzymes and acts as biocatalyst with industrial significance. They carry out biochemical transformation in non-aqueous and aqueous phases quickly. To further make the process more specific Design Expert software was used for the optimization of synthesize phenol for maximum % Yield and % Purity. Effect of temperature, Concentration of Catalyst, and Volume of Water was selected as an independent factor to get the maximum % Yield and % Purity of the phenol. The results confirmed the mathematical model robustness and justify experimental design. Therefore, the current protocol for synthesis of phenols from phenylboronic acid is greenest and environmentally benign alternative. The current convention has many benefits, like phenomenal product yields, reduced time of reaction, simple procedure to work up, and extensive substrate scope, cost-effective and also lipase was recuperated and reused multiple times without significant loss of its catalytic activity.
期刊介绍:
The purpose of Polycyclic Aromatic Compounds is to provide an international and interdisciplinary forum for all aspects of research related to polycyclic aromatic compounds (PAC). Topics range from fundamental research in chemistry (including synthetic and theoretical chemistry) and physics (including astrophysics), as well as thermodynamics, spectroscopy, analytical methods, and biology to applied studies in environmental science, biochemistry, toxicology, and industry. Polycyclic Aromatic Compounds has an outstanding Editorial Board and offers a rapid and efficient peer review process, as well as a flexible open access policy.