{"title":"Continuous Infrared Analysis Of N2O in combustion products","authors":"Tami A. Montgomery, G. Samuelsen, L. Muzio","doi":"10.1080/08940630.1989.10466559","DOIUrl":null,"url":null,"abstract":"Nitrous oxide (N2O) levels in the atmosphere are increasing, potentially contributing to the greenhouse effect and depletion of stratospheric ozone. From a limited data base, combustion sources have been identified as a major anthropogenic source of N2O. However, the existing data base (obtained by traditional grab sampling techniques followed by gas chromatographic analysis) is in question due to the discovery of a sampling artifact. A continuous on-line N2O analyzer would enable and facilitate the accurate characterization of combustion sources over a range of operating conditions, and also aid in the development of an appropriate sampling technique. This paper addresses the development of a continuous measurement technique, and the evaluation and initial use of a field prototype continuous N2O analyzer developed at the UCI Combustion Laboratory in cooperation with a major instrument manufacturer. The analyzer is capable of measuring N2O levels down to a few ppm. The analyzer has been evaluated and used...","PeriodicalId":17188,"journal":{"name":"Journal of the Air Pollution Control Association","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1989-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Air Pollution Control Association","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/08940630.1989.10466559","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14
Abstract
Nitrous oxide (N2O) levels in the atmosphere are increasing, potentially contributing to the greenhouse effect and depletion of stratospheric ozone. From a limited data base, combustion sources have been identified as a major anthropogenic source of N2O. However, the existing data base (obtained by traditional grab sampling techniques followed by gas chromatographic analysis) is in question due to the discovery of a sampling artifact. A continuous on-line N2O analyzer would enable and facilitate the accurate characterization of combustion sources over a range of operating conditions, and also aid in the development of an appropriate sampling technique. This paper addresses the development of a continuous measurement technique, and the evaluation and initial use of a field prototype continuous N2O analyzer developed at the UCI Combustion Laboratory in cooperation with a major instrument manufacturer. The analyzer is capable of measuring N2O levels down to a few ppm. The analyzer has been evaluated and used...