Designing a word recommendation application using the Levenshtein Distance algorithm

Nadhia Nurin Syarafina, Teknik Informatika Stiki Malang, J. Palandi
{"title":"Designing a word recommendation application using the Levenshtein Distance algorithm","authors":"Nadhia Nurin Syarafina, Teknik Informatika Stiki Malang, J. Palandi","doi":"10.31940/MATRIX.V11I2.2419","DOIUrl":null,"url":null,"abstract":"Good scriptwriting or reporting requires a high level of accuracy. The basic problem is that the level of accuracy of the authors is not the same. The low level of accuracy allows for mistyping of words in a sentence. Typing errors caused the word to become non-standard. Even worse, the word became meaningless. In this case, the recommendation application serves to provide word-writing recommendations in case of a typing error. This application can reduce the error rate of the writer when typing. One method to improve word spelling is Approximate String Matching. This method applies an approach to the string search process. The Levenshtein Distance algorithm is a part of the Approximate String-Matching method. This method, firstly, is necessary to go through the preprocessing stage to correct an incorrectly written word using the Levenshtein Distance algorithm. The application testing phase uses ten texts composed of 100 words, ten texts composed of 100 to 250 words, and ten texts composed of 250 to 500 words. The average accuracy rate of these test results was 95%, 94%, and 90%.","PeriodicalId":31964,"journal":{"name":"Matrix Jurnal Manajemen Teknologi dan Informatika","volume":"85 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matrix Jurnal Manajemen Teknologi dan Informatika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31940/MATRIX.V11I2.2419","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Good scriptwriting or reporting requires a high level of accuracy. The basic problem is that the level of accuracy of the authors is not the same. The low level of accuracy allows for mistyping of words in a sentence. Typing errors caused the word to become non-standard. Even worse, the word became meaningless. In this case, the recommendation application serves to provide word-writing recommendations in case of a typing error. This application can reduce the error rate of the writer when typing. One method to improve word spelling is Approximate String Matching. This method applies an approach to the string search process. The Levenshtein Distance algorithm is a part of the Approximate String-Matching method. This method, firstly, is necessary to go through the preprocessing stage to correct an incorrectly written word using the Levenshtein Distance algorithm. The application testing phase uses ten texts composed of 100 words, ten texts composed of 100 to 250 words, and ten texts composed of 250 to 500 words. The average accuracy rate of these test results was 95%, 94%, and 90%.
使用Levenshtein距离算法设计一个单词推荐应用程序
好的剧本或报道需要高度的准确性。基本的问题是,作者的准确性水平是不一样的。较低的准确率会导致句子中的单词输入错误。打字错误导致这个词变得非标准。更糟糕的是,这个词变得毫无意义。在这种情况下,推荐应用程序用于在出现输入错误时提供单词写作建议。这个应用程序可以减少打字时的错误率。改进单词拼写的一种方法是近似字符串匹配。此方法将一种方法应用于字符串搜索过程。Levenshtein距离算法是近似字符串匹配方法的一部分。这种方法首先需要经过预处理阶段,使用Levenshtein距离算法来纠正错误的书写单词。应用程序测试阶段使用10个由100个单词组成的文本,10个由100到250个单词组成的文本,10个由250到500个单词组成的文本。这些检测结果的平均准确率分别为95%、94%和90%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
13
审稿时长
24 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信