Bounds for Polynomial’s Roots from Fiedler and Sparse Companion Matrices for Submultiplicative Matrix Norms

Mamoudou Amadou Bondabou, Ousmane Moussa Tessa, Amidou Morou
{"title":"Bounds for Polynomial’s Roots from Fiedler and Sparse Companion Matrices for Submultiplicative Matrix Norms","authors":"Mamoudou Amadou Bondabou, Ousmane Moussa Tessa, Amidou Morou","doi":"10.4236/ALAMT.2021.111001","DOIUrl":null,"url":null,"abstract":"We use submultiplicative companion matrix norms to provide new bounds for roots for a given polynomial P(X) over the field C[X]. From a n×n Fiedler companion matrix C, sparse companion matrices and triangular Hessenberg matrices are introduced. Then, we identify a special triangular Hessenberg matrix Lr, supposed to provide a good estimation of the roots. By application of Gershgorin’s theorems to this special matrix in case of submultiplicative matrix norms, some estimations of bounds for roots are made. The obtained bounds have been compared to known ones from the literature precisely Cauchy’s bounds, Montel’s bounds and Carmichel-Mason’s bounds. According to the starting formel of Lr, we see that the more we have coefficients closed to zero with a norm less than 1, the more the Sparse method is useful.","PeriodicalId":65610,"journal":{"name":"线性代数与矩阵理论研究进展(英文)","volume":"73 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"线性代数与矩阵理论研究进展(英文)","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.4236/ALAMT.2021.111001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

We use submultiplicative companion matrix norms to provide new bounds for roots for a given polynomial P(X) over the field C[X]. From a n×n Fiedler companion matrix C, sparse companion matrices and triangular Hessenberg matrices are introduced. Then, we identify a special triangular Hessenberg matrix Lr, supposed to provide a good estimation of the roots. By application of Gershgorin’s theorems to this special matrix in case of submultiplicative matrix norms, some estimations of bounds for roots are made. The obtained bounds have been compared to known ones from the literature precisely Cauchy’s bounds, Montel’s bounds and Carmichel-Mason’s bounds. According to the starting formel of Lr, we see that the more we have coefficients closed to zero with a norm less than 1, the more the Sparse method is useful.
次乘法矩阵范数的Fiedler和稀疏伴矩阵多项式根的界
我们使用子乘法伴矩阵范数为给定多项式P(X)在域C[X]上的根提供了新的界。从n×n Fiedler伴侣矩阵C出发,介绍了稀疏伴侣矩阵和三角形Hessenberg矩阵。然后,我们确定了一个特殊的三角形Hessenberg矩阵Lr,它提供了根的一个很好的估计。将Gershgorin定理应用于这种特殊的矩阵,在矩阵的次乘范数情况下,给出了根的界的一些估计。得到的边界与文献中已知的边界进行了比较,精确地说就是柯西边界、蒙泰尔边界和卡尔米歇尔-梅森边界。根据Lr的开始形式,我们看到系数越接近于零且范数小于1,稀疏方法就越有用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
56
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信