Long-term prediction of nitrogen dioxide concentrations using seasonal decomposition

B. Bizjak
{"title":"Long-term prediction of nitrogen dioxide concentrations using seasonal decomposition","authors":"B. Bizjak","doi":"10.1109/INFOTEH53737.2022.9751330","DOIUrl":null,"url":null,"abstract":"At higher concentrations of nitrogen dioxide, which is the most toxic nitric oxide, chronic bronchitis and asthmatic patients are particularly affected. For the city of Nova Gorica, Slovenia, we predicted monthly concentrations for 12 months in the coming year 2022. The first version of the forecast was performed with the classic SARIMA method - the general multiplicative seasonal model. A new method followed, here ARIMA, forecasting from the seasonally adjusted time series. For seasonal decompositions, we used Census Method 1 in the first version and Manual Seasonal Decomposition in the second version. According to the RMSE criteria, the forecast with separate seasonal decomposition models is 50% better than the basic general multiplicative seasonal model.","PeriodicalId":6839,"journal":{"name":"2022 21st International Symposium INFOTEH-JAHORINA (INFOTEH)","volume":"201 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 21st International Symposium INFOTEH-JAHORINA (INFOTEH)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INFOTEH53737.2022.9751330","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

At higher concentrations of nitrogen dioxide, which is the most toxic nitric oxide, chronic bronchitis and asthmatic patients are particularly affected. For the city of Nova Gorica, Slovenia, we predicted monthly concentrations for 12 months in the coming year 2022. The first version of the forecast was performed with the classic SARIMA method - the general multiplicative seasonal model. A new method followed, here ARIMA, forecasting from the seasonally adjusted time series. For seasonal decompositions, we used Census Method 1 in the first version and Manual Seasonal Decomposition in the second version. According to the RMSE criteria, the forecast with separate seasonal decomposition models is 50% better than the basic general multiplicative seasonal model.
利用季节分解长期预测二氧化氮浓度
高浓度的二氧化氮是毒性最大的一氧化氮,慢性支气管炎和哮喘患者受到的影响尤其严重。对于斯洛文尼亚的新戈里察市,我们预测了未来2022年12个月的月浓度。第一个版本的预报是用经典的SARIMA方法-一般乘法季节模型进行的。随后出现了一种新的方法,ARIMA,根据季节调整后的时间序列进行预测。对于季节分解,我们在第一个版本中使用Census Method 1,在第二个版本中使用Manual seasonal Decomposition。根据RMSE标准,单独季节分解模型的预报效果比基本的一般乘法季节模型的预报效果好50%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信