Remotely $c$-almost periodic type functions in ${\mathbb{R}}^{n}$

IF 0.5 Q3 MATHEMATICS
M. Kostić, Vipin Kumar
{"title":"Remotely $c$-almost periodic type functions in ${\\mathbb{R}}^{n}$","authors":"M. Kostić, Vipin Kumar","doi":"10.5817/am2022-2-85","DOIUrl":null,"url":null,"abstract":"In this paper, we relate the notions of remote almost periodicity and quasi-asymptotical almost periodicity; in actual fact, we observe that a remotely almost periodic function is nothing else but a bounded, uniformly continuous quasi-asymptotically almost periodic function. We introduce and analyze several new classes of remotely $c$-almost periodic functions in ${\\mathbb R}^{n},$ slowly oscillating functions in ${\\mathbb R}^{n},$ and further analyze the recently introduced class of quasi-asymptotically $c$-almost periodic functions in ${\\mathbb R}^{n}.$ We provide certain applications of our theoretical results to the abstract Volterra integro-differential equations and the ordinary differential equations.","PeriodicalId":45191,"journal":{"name":"Archivum Mathematicum","volume":"78 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2021-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archivum Mathematicum","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5817/am2022-2-85","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, we relate the notions of remote almost periodicity and quasi-asymptotical almost periodicity; in actual fact, we observe that a remotely almost periodic function is nothing else but a bounded, uniformly continuous quasi-asymptotically almost periodic function. We introduce and analyze several new classes of remotely $c$-almost periodic functions in ${\mathbb R}^{n},$ slowly oscillating functions in ${\mathbb R}^{n},$ and further analyze the recently introduced class of quasi-asymptotically $c$-almost periodic functions in ${\mathbb R}^{n}.$ We provide certain applications of our theoretical results to the abstract Volterra integro-differential equations and the ordinary differential equations.
远程$c$- ${\mathbb{R}}^{n}$中的几乎周期类型函数
本文给出了远概周期和拟渐近概周期的概念;实际上,我们观察到一个远概周期函数只不过是一个有界的,一致连续的拟渐近概周期函数。引入并分析了${\mathbb R}^{n}中的$c$-概周期函数、${\mathbb R}^{n}中的$慢振荡函数和${\mathbb R}^{n}中最近引入的拟渐近$c$-概周期函数。我们给出了我们的理论结果在抽象Volterra积分微分方程和常微分方程中的一些应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Archivum Mathematicum
Archivum Mathematicum MATHEMATICS-
CiteScore
0.70
自引率
16.70%
发文量
0
审稿时长
35 weeks
期刊介绍: Archivum Mathematicum is a mathematical journal which publishes exclusively scientific mathematical papers. The journal, founded in 1965, is published by the Department of Mathematics and Statistics of the Faculty of Science of Masaryk University. A review of each published paper appears in Mathematical Reviews and also in Zentralblatt für Mathematik. The journal is indexed by Scopus.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信