Nonparametric Estimation of the Volatility Under Microstructure Noise: Wavelet Adaptation

M. Hoffmann, A. Munk, J. Schmidt-Hieber
{"title":"Nonparametric Estimation of the Volatility Under Microstructure Noise: Wavelet Adaptation","authors":"M. Hoffmann, A. Munk, J. Schmidt-Hieber","doi":"10.2139/ssrn.1661906","DOIUrl":null,"url":null,"abstract":"We study nonparametric estimation of the volatility function of a diffusion process from discrete data, when the data are blurred by additional noise. This noise can be white or correlated, and serves as a model for microstructure effects in financial modeling, when the data are given on an intra-day scale. By developing pre-averaging techniques combined with wavelet thresholding, we construct adaptive estimators that achieve a nearly optimal rate within a large scale of smoothness constraints of Besov type. Since the underlying signal (the volatility) is genuinely random, we propose a new criterion to assess the quality of estimation; we retrieve the usual minimax theory when this approach is restricted to deterministic volatility.","PeriodicalId":11744,"journal":{"name":"ERN: Nonparametric Methods (Topic)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2010-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Nonparametric Methods (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.1661906","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

We study nonparametric estimation of the volatility function of a diffusion process from discrete data, when the data are blurred by additional noise. This noise can be white or correlated, and serves as a model for microstructure effects in financial modeling, when the data are given on an intra-day scale. By developing pre-averaging techniques combined with wavelet thresholding, we construct adaptive estimators that achieve a nearly optimal rate within a large scale of smoothness constraints of Besov type. Since the underlying signal (the volatility) is genuinely random, we propose a new criterion to assess the quality of estimation; we retrieve the usual minimax theory when this approach is restricted to deterministic volatility.
微观结构噪声下波动率的非参数估计:小波自适应
研究了当数据被附加噪声模糊时,扩散过程的波动函数的非参数估计。这种噪声可以是白色的,也可以是相关的,当数据是在日内给出时,它可以作为金融建模中微观结构效应的模型。通过开发与小波阈值相结合的预平均技术,我们构建了自适应估计器,该估计器在Besov型平滑约束的大范围内实现了近乎最优的速率。由于潜在的信号(波动率)是真正随机的,我们提出了一个新的标准来评估估计的质量;当这种方法被限制在确定性波动时,我们恢复了通常的极小极大理论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信