Multi-Criteria Problems of Energy Consumption in Buildings Considering Technical and Economic Indices

IF 1.4 Q4 GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY
J. Jumintono, Mohammed Abdulkreem Salim, Ming-Hung Lin, Mohammed Hayder Alshalal, Muneam Hussein Ali, Hassan Taher Braiber
{"title":"Multi-Criteria Problems of Energy Consumption in Buildings Considering Technical and Economic Indices","authors":"J. Jumintono, Mohammed Abdulkreem Salim, Ming-Hung Lin, Mohammed Hayder Alshalal, Muneam Hussein Ali, Hassan Taher Braiber","doi":"10.2478/rtuect-2023-0028","DOIUrl":null,"url":null,"abstract":"Abstract This study focuses on economic modelling of the energy consumption in buildings considering controllable appliances scheduling in stand-alone electrical grids. The economic modelling is implemented via coordination of the energy generation of the renewable energies with controllable appliances by using demand shifting strategy (DSS). On the other side, uncertainty and stochastic modelling of the renewable energies are considered in the optimal coordination. Also, optimal coordination is modelled by multi-criteria problems of the technical and economic indices. Solving of the multi-criteria problem is done by fuzzy and augmented epsilon-constraint methods. To investigate the effectiveness of the proposed model, it is applied on a 25-node test system through defining two scenarios. The obtained results show that modelling the optimal coordination to supply the demand of the grid can increase the efficiency of the system.","PeriodicalId":46053,"journal":{"name":"Environmental and Climate Technologies","volume":"7 1","pages":"379 - 390"},"PeriodicalIF":1.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental and Climate Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/rtuect-2023-0028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract This study focuses on economic modelling of the energy consumption in buildings considering controllable appliances scheduling in stand-alone electrical grids. The economic modelling is implemented via coordination of the energy generation of the renewable energies with controllable appliances by using demand shifting strategy (DSS). On the other side, uncertainty and stochastic modelling of the renewable energies are considered in the optimal coordination. Also, optimal coordination is modelled by multi-criteria problems of the technical and economic indices. Solving of the multi-criteria problem is done by fuzzy and augmented epsilon-constraint methods. To investigate the effectiveness of the proposed model, it is applied on a 25-node test system through defining two scenarios. The obtained results show that modelling the optimal coordination to supply the demand of the grid can increase the efficiency of the system.
考虑技术经济指标的建筑能耗多准则问题
摘要:本文主要研究考虑独立电网中可控设备调度的建筑能耗经济模型。采用需求转移策略(DSS),通过可再生能源发电与可控设备的协调来实现经济建模。另一方面,在优化协调中考虑了可再生能源的不确定性和随机建模。通过技术经济指标的多准则问题,建立了最优协调模型。采用模糊和增广的约束方法求解多准则问题。为了验证该模型的有效性,通过定义两种场景,将其应用于一个25节点的测试系统。研究结果表明,对电网的最优协调进行建模,以满足电网的需求,可以提高系统的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Environmental and Climate Technologies
Environmental and Climate Technologies GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY-
CiteScore
3.10
自引率
28.60%
发文量
0
审稿时长
16 weeks
期刊介绍: Environmental and Climate Technologies provides a forum for information on innovation, research and development in the areas of environmental science, energy resources and processes, innovative technologies and energy efficiency. Authors are encouraged to submit manuscripts which cover the range from bioeconomy, sustainable technology development, life cycle analysis, eco-design, climate change mitigation, innovative solutions for pollution reduction to resilience, the energy efficiency of buildings, secure and sustainable energy supplies. The Journal ensures international publicity for original research and innovative work. A variety of themes are covered through a multi-disciplinary approach, one which integrates all aspects of environmental science: -Sustainability of technology development- Bioeconomy- Cleaner production, end of pipe production- Zero emission technologies- Eco-design- Life cycle analysis- Eco-efficiency- Environmental impact assessment- Environmental management systems- Resilience- Energy and carbon markets- Greenhouse gas emission reduction and climate technologies- Methodologies for the evaluation of sustainability- Renewable energy resources- Solar, wind, geothermal, hydro energy, biomass sources: algae, wood, straw, biogas, energetic plants and organic waste- Waste management- Quality of outdoor and indoor environment- Environmental monitoring and evaluation- Heat and power generation, including district heating and/or cooling- Energy efficiency.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信