Intensification of Ozone Mass Transfer and Generation of Hydroxyl Radicals by Ceramic Membrane

IF 2.1 4区 环境科学与生态学 Q3 ENGINEERING, ENVIRONMENTAL
Shu Zhu, G. Cheng, X. Quan, Facheng Qiu, Weiyang Bai, Yijuan Tian
{"title":"Intensification of Ozone Mass Transfer and Generation of Hydroxyl Radicals by Ceramic Membrane","authors":"Shu Zhu, G. Cheng, X. Quan, Facheng Qiu, Weiyang Bai, Yijuan Tian","doi":"10.1080/01919512.2021.1960149","DOIUrl":null,"url":null,"abstract":"ABSTRACT The strengthening ability of ozone to treat the reverse osmosis concentrate (ROC) of landfill leachate is a crucial issue. From the standpoint of coupling intensification, a ceramic membrane/ozone (CM/O3) system was developed to improve the oxidation performance of ozone. The results showed that CM/O3 system could significantly improve the ozone concentration and the generation of hydroxyl radicals (·OH) when compared to the traditional O3 bubble system. The reaction condition, such as inlet ozone concentration and ozone flow, ceramic membrane pore size, transmembrane pressure, and temperature on the concentration of ozone in the liquid phase and the formation of ·OH, has been considered. Experimental results showed that the concentration of ozone and OH in the liquid increased with the increase in the inlet ozone concentration and ozone flow. Moreover, a certain degree of reduction in membrane pores was facilitated to intensify the mass transfer of ozone. The increase of pressure was able to raise the concentration of ozone. However, there was a slight effect on ·OH concentration. As for the temperature, a low-temperature situation was conducive to strengthen ozone dissolution. In terms of the generation of ·OH, a high-temperature situation was a better favorable environment. In order to evaluate the performance of the reactor system, three treatment processes (CM/O3, CM alone and O3 alone) were compared to treat ROC. In the CM/O3 system, the final removal efficiency of Chemical Oxygen Demand (COD) was 81.9%, and the final removal efficiency of Total Organic Carbon (TOC) was 62.6%.","PeriodicalId":19580,"journal":{"name":"Ozone: Science & Engineering","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2021-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ozone: Science & Engineering","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/01919512.2021.1960149","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 1

Abstract

ABSTRACT The strengthening ability of ozone to treat the reverse osmosis concentrate (ROC) of landfill leachate is a crucial issue. From the standpoint of coupling intensification, a ceramic membrane/ozone (CM/O3) system was developed to improve the oxidation performance of ozone. The results showed that CM/O3 system could significantly improve the ozone concentration and the generation of hydroxyl radicals (·OH) when compared to the traditional O3 bubble system. The reaction condition, such as inlet ozone concentration and ozone flow, ceramic membrane pore size, transmembrane pressure, and temperature on the concentration of ozone in the liquid phase and the formation of ·OH, has been considered. Experimental results showed that the concentration of ozone and OH in the liquid increased with the increase in the inlet ozone concentration and ozone flow. Moreover, a certain degree of reduction in membrane pores was facilitated to intensify the mass transfer of ozone. The increase of pressure was able to raise the concentration of ozone. However, there was a slight effect on ·OH concentration. As for the temperature, a low-temperature situation was conducive to strengthen ozone dissolution. In terms of the generation of ·OH, a high-temperature situation was a better favorable environment. In order to evaluate the performance of the reactor system, three treatment processes (CM/O3, CM alone and O3 alone) were compared to treat ROC. In the CM/O3 system, the final removal efficiency of Chemical Oxygen Demand (COD) was 81.9%, and the final removal efficiency of Total Organic Carbon (TOC) was 62.6%.
陶瓷膜强化臭氧传质及羟基自由基的生成
臭氧对垃圾渗滤液反渗透浓缩液(ROC)的强化处理能力是一个关键问题。从耦合强化的角度出发,开发了陶瓷膜/臭氧(CM/O3)体系,以提高臭氧的氧化性能。结果表明,与传统的O3气泡体系相比,CM/O3体系能显著提高臭氧浓度和羟基自由基(·OH)的生成。考虑了进口臭氧浓度和臭氧流量、陶瓷膜孔径、跨膜压力、温度等反应条件对液相臭氧浓度和·OH生成的影响。实验结果表明,随着进口臭氧浓度和臭氧流量的增加,液体中臭氧和OH的浓度增加。此外,膜孔的一定程度的减少有助于加强臭氧的传质。压力的增加能够提高臭氧的浓度。而对·OH浓度的影响较小。在温度方面,低温有利于加强臭氧的溶解。就生成·OH而言,高温条件是较有利的环境。为了评价反应器系统的性能,比较了三种处理工艺(CM/O3、CM单独和O3单独)处理ROC。在CM/O3体系中,化学需氧量(COD)的最终去除率为81.9%,总有机碳(TOC)的最终去除率为62.6%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Ozone: Science & Engineering
Ozone: Science & Engineering 环境科学-工程:环境
CiteScore
5.90
自引率
11.10%
发文量
40
审稿时长
2 months
期刊介绍: The only journal in the world that focuses on the technologies of ozone and related oxidation technologies, Ozone: Science and Engineering brings you quality original research, review papers, research notes, and case histories in each issue. Get the most up-to date results of basic, applied, and engineered research including: -Ozone generation and contacting- Treatment of drinking water- Analysis of ozone in gases and liquids- Treatment of wastewater and hazardous waste- Advanced oxidation processes- Treatment of emerging contaminants- Agri-Food applications- Process control of ozone systems- New applications for ozone (e.g. laundry applications, semiconductor applications)- Chemical synthesis. All submitted manuscripts are subject to initial appraisal by the Editor, and, if found suitable for further consideration, to peer review by independent, anonymous expert referees.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信