Spatiotemporal segmentation and tracking of objects in color image sequences

Y. Kompatsiaris, George Mantzaras, M. Strintzis
{"title":"Spatiotemporal segmentation and tracking of objects in color image sequences","authors":"Y. Kompatsiaris, George Mantzaras, M. Strintzis","doi":"10.1109/ISCAS.2000.857355","DOIUrl":null,"url":null,"abstract":"In this paper a procedure is described for the segmentation and tracking of objects in color image sequences. For this purpose, we propose the novel procedure of K-Means with a connectivity constraint algorithm as a general segmentation algorithm combining several types of information including color, motion and compactness. In this algorithm, the use of spatiotemporal regions is introduced since a number of frames is analyzed simultaneously and as a result the same region is present in consequent frames. Experimental results in real image sequences evaluate the performance of the algorithm.","PeriodicalId":6422,"journal":{"name":"2000 IEEE International Symposium on Circuits and Systems. Emerging Technologies for the 21st Century. Proceedings (IEEE Cat No.00CH36353)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2000-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2000 IEEE International Symposium on Circuits and Systems. Emerging Technologies for the 21st Century. Proceedings (IEEE Cat No.00CH36353)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCAS.2000.857355","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

In this paper a procedure is described for the segmentation and tracking of objects in color image sequences. For this purpose, we propose the novel procedure of K-Means with a connectivity constraint algorithm as a general segmentation algorithm combining several types of information including color, motion and compactness. In this algorithm, the use of spatiotemporal regions is introduced since a number of frames is analyzed simultaneously and as a result the same region is present in consequent frames. Experimental results in real image sequences evaluate the performance of the algorithm.
彩色图像序列中目标的时空分割与跟踪
本文描述了彩色图像序列中目标的分割与跟踪方法。为此,我们提出了一种新的带有连通性约束的K-Means算法,作为一种综合了颜色、运动和紧密度等多种信息的通用分割算法。在该算法中,引入了时空区域的使用,因为同时分析了许多帧,因此在后续帧中存在相同的区域。在真实图像序列中的实验结果评价了算法的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信