On object classification by means of fuzzy sets' theory

Q4 Computer Science
H. Costin
{"title":"On object classification by means of fuzzy sets' theory","authors":"H. Costin","doi":"10.1109/ICPR.1992.201817","DOIUrl":null,"url":null,"abstract":"Presents a practical method for a supervised object classification by means of a decision-making approach using fuzzy sets. The unknown object membership function, as well as the distance between the input symbol and the chosen prototypes, are computed. The classification is made according to the input pattern which maximizes the membership function. The insensitivity of the classification algorithms to the pattern size, misalignment, the possibility of non-complete symbols recognition, and identification of the information source, are accomplished.<<ETX>>","PeriodicalId":34917,"journal":{"name":"模式识别与人工智能","volume":"21 1","pages":"458-461"},"PeriodicalIF":0.0000,"publicationDate":"1992-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"模式识别与人工智能","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.1109/ICPR.1992.201817","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 4

Abstract

Presents a practical method for a supervised object classification by means of a decision-making approach using fuzzy sets. The unknown object membership function, as well as the distance between the input symbol and the chosen prototypes, are computed. The classification is made according to the input pattern which maximizes the membership function. The insensitivity of the classification algorithms to the pattern size, misalignment, the possibility of non-complete symbols recognition, and identification of the information source, are accomplished.<>
用模糊集理论研究对象分类
提出了一种实用的基于模糊集决策的有监督目标分类方法。计算未知对象隶属函数以及输入符号与所选原型之间的距离。根据最大隶属函数的输入模式进行分类。完成了分类算法对模式大小、不对齐、非完全符号识别的可能性和信息源识别的不敏感性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
模式识别与人工智能
模式识别与人工智能 Computer Science-Artificial Intelligence
CiteScore
1.60
自引率
0.00%
发文量
3316
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信