{"title":"2019 SNOOK Prizes in Computational Statistical Mechanics","authors":"W. Hoover, C. G. Hoover","doi":"10.12921/CMST.2019.0000009","DOIUrl":null,"url":null,"abstract":"The one-dimensional φ Model generalizes a harmonic chain with nearest-neighbor Hooke’s-Law interactions by adding quartic potentials tethering each particle to its lattice site. In their studies of this model Kenichiro Aoki and Dimitri Kusnezov emphasized its most interesting feature: because the quartic tethers act to scatter long-wavelength phonons, φ chains exhibit Fourier heat conduction. In his recent Snook-Prize work Aoki also showed that the model can exhibit chaos on the threedimensional energy surface describing a two-body two-spring chain. That surface can include at least two distinct chaotic seas. Aoki pointed out that the model typically exhibits different kinetic temperatures for the two bodies. Evidently few-body φ problems merit more investigation. Accordingly, the 2019 Prizes honoring Ian Snook (1945–2013) [five hundred United States dollars cash from the Hoovers and an additional $500 cash from the Institute of Bioorganic Chemistry of the Polish Academy of Sciences and the Poznan Supercomputing and Networking Center] will be awarded to the author(s) of the most interesting work analyzing and discussing few-body φ models from the standpoints of dynamical systems theory and macroscopic thermodynamics, taking into account the model’s ability to maintain a steady-state kinetic temperature gradient as well as at least two coexisting chaotic seas in the presence of deterministic chaos.","PeriodicalId":10561,"journal":{"name":"computational methods in science and technology","volume":"104 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"computational methods in science and technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12921/CMST.2019.0000009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The one-dimensional φ Model generalizes a harmonic chain with nearest-neighbor Hooke’s-Law interactions by adding quartic potentials tethering each particle to its lattice site. In their studies of this model Kenichiro Aoki and Dimitri Kusnezov emphasized its most interesting feature: because the quartic tethers act to scatter long-wavelength phonons, φ chains exhibit Fourier heat conduction. In his recent Snook-Prize work Aoki also showed that the model can exhibit chaos on the threedimensional energy surface describing a two-body two-spring chain. That surface can include at least two distinct chaotic seas. Aoki pointed out that the model typically exhibits different kinetic temperatures for the two bodies. Evidently few-body φ problems merit more investigation. Accordingly, the 2019 Prizes honoring Ian Snook (1945–2013) [five hundred United States dollars cash from the Hoovers and an additional $500 cash from the Institute of Bioorganic Chemistry of the Polish Academy of Sciences and the Poznan Supercomputing and Networking Center] will be awarded to the author(s) of the most interesting work analyzing and discussing few-body φ models from the standpoints of dynamical systems theory and macroscopic thermodynamics, taking into account the model’s ability to maintain a steady-state kinetic temperature gradient as well as at least two coexisting chaotic seas in the presence of deterministic chaos.