{"title":"$\\mathbb{Z}_2$ phases and Majorana spectroscopy in paired Bose-Hubbard chains","authors":"S. Vishveshwara, D. Weld","doi":"10.1103/PhysRevA.103.L051301","DOIUrl":null,"url":null,"abstract":"We investigate the Bose-Hubbard chain in the presence of nearest-neighbor pairing. The pairing term gives rise to an unusual gapped $\\mathbb{Z}_2$ Ising phase that has number fluctuation but no off-diagonal long range order. This phase has a strongly correlated many-body doubly degenerate ground state which is effectively a gap-protected macroscopic qubit. In the strongly interacting limit, the system can be mapped onto an anisotropic transverse spin chain, which in turn can be mapped to the better-known fermionic sister of the paired Bose-Hubbard chain: the Kitaev chain which hosts zero-energy Majorana bound states. While corresponding phases in the fermionic and bosonic systems have starkly different wavefunctions, they share identical energy spectra. We describe a possible cold-atom realization of the paired Bose-Hubbard model in a biased zig-zag optical lattice with reservoir-induced pairing, opening a possible route towards experimental Kitaev chain spectroscopy.","PeriodicalId":8838,"journal":{"name":"arXiv: Quantum Gases","volume":"1996 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Quantum Gases","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/PhysRevA.103.L051301","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We investigate the Bose-Hubbard chain in the presence of nearest-neighbor pairing. The pairing term gives rise to an unusual gapped $\mathbb{Z}_2$ Ising phase that has number fluctuation but no off-diagonal long range order. This phase has a strongly correlated many-body doubly degenerate ground state which is effectively a gap-protected macroscopic qubit. In the strongly interacting limit, the system can be mapped onto an anisotropic transverse spin chain, which in turn can be mapped to the better-known fermionic sister of the paired Bose-Hubbard chain: the Kitaev chain which hosts zero-energy Majorana bound states. While corresponding phases in the fermionic and bosonic systems have starkly different wavefunctions, they share identical energy spectra. We describe a possible cold-atom realization of the paired Bose-Hubbard model in a biased zig-zag optical lattice with reservoir-induced pairing, opening a possible route towards experimental Kitaev chain spectroscopy.