Construction of Nonsingular Stress Fields for Non-Euclidean Model in Planar Deformations

IF 0.4 Q4 MATHEMATICS
M. Guzev, E. Riabokon
{"title":"Construction of Nonsingular Stress Fields for Non-Euclidean Model in Planar Deformations","authors":"M. Guzev, E. Riabokon","doi":"10.17516/1997-1397-2021-14-6-815-821","DOIUrl":null,"url":null,"abstract":"A material with a microstructure is considered. A material is described on the basis of a non-Euclidean model of a continuous medium. In equilibrium, the total stress field is represented as the sum of elastic and self-balanced stresses, the parameterization of which is given through the scalar curvature of the Ricci tensor. It is proposed to use the spectral biharmonic equation to calculate the scalar curvature. Using the example of a plane strain state of a material, it is shown that the amplitude coefficients of elastic and self-balanced fields can be chosen so that singularities of the same type compensate each other in the full stress field","PeriodicalId":43965,"journal":{"name":"Journal of Siberian Federal University-Mathematics & Physics","volume":"104 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Siberian Federal University-Mathematics & Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17516/1997-1397-2021-14-6-815-821","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

A material with a microstructure is considered. A material is described on the basis of a non-Euclidean model of a continuous medium. In equilibrium, the total stress field is represented as the sum of elastic and self-balanced stresses, the parameterization of which is given through the scalar curvature of the Ricci tensor. It is proposed to use the spectral biharmonic equation to calculate the scalar curvature. Using the example of a plane strain state of a material, it is shown that the amplitude coefficients of elastic and self-balanced fields can be chosen so that singularities of the same type compensate each other in the full stress field
平面变形非欧几里德模型非奇异应力场的构造
考虑一种具有微观结构的材料。材料是根据连续介质的非欧几里得模型来描述的。在平衡状态下,总应力场表示为弹性应力和自平衡应力之和,其参数化通过里奇张量的标量曲率给出。提出了用谱双调和方程计算标量曲率的方法。以材料的平面应变状态为例,说明了弹性场和自平衡场的幅值系数可以选择,使得在全应力场中,相同类型的奇异点可以相互补偿
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
26
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信