Learning to avoid collisions: A reinforcement learning paradigm for mobile robot navigation

B.J.A. Kröse, J.W.M. van Dam
{"title":"Learning to avoid collisions: A reinforcement learning paradigm for mobile robot navigation","authors":"B.J.A. Kröse,&nbsp;J.W.M. van Dam","doi":"10.1016/S0066-4138(09)91052-7","DOIUrl":null,"url":null,"abstract":"<div><p>The paper describes a self-learning control system for a mobile robot. Based on sensor information the control system has to provide a steering signal in such a way that collisions are avoided. Since in our case no «examples« are available, the system learns on the basis of an external reinforcement signal which is negative in case of a collision and zero otherwise. We describe the adaptive algorithm which is used for a discrete coding of the state space, and the adaptive algorithm for learning the correct mapping from the input (state) vector to the output (steering) signal.</p></div>","PeriodicalId":100097,"journal":{"name":"Annual Review in Automatic Programming","volume":"17 ","pages":"Pages 317-321"},"PeriodicalIF":0.0000,"publicationDate":"1992-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0066-4138(09)91052-7","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review in Automatic Programming","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0066413809910527","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

The paper describes a self-learning control system for a mobile robot. Based on sensor information the control system has to provide a steering signal in such a way that collisions are avoided. Since in our case no «examples« are available, the system learns on the basis of an external reinforcement signal which is negative in case of a collision and zero otherwise. We describe the adaptive algorithm which is used for a discrete coding of the state space, and the adaptive algorithm for learning the correct mapping from the input (state) vector to the output (steering) signal.

学习避免碰撞:移动机器人导航的强化学习范式
介绍了一种移动机器人的自学习控制系统。基于传感器信息,控制系统必须以避免碰撞的方式提供转向信号。由于在我们的例子中没有可用的“示例”,系统根据外部强化信号进行学习,该信号在发生碰撞时为负,否则为零。我们描述了用于状态空间离散编码的自适应算法,以及用于学习从输入(状态)向量到输出(转向)信号的正确映射的自适应算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信