Modeling Detailed Cloud Scene from Multi-source Images

Yunchi Cen, Xiaohui Liang, Junping Chen, Bailin Yang, Frederick W. B. Li
{"title":"Modeling Detailed Cloud Scene from Multi-source Images","authors":"Yunchi Cen, Xiaohui Liang, Junping Chen, Bailin Yang, Frederick W. B. Li","doi":"10.2312/PG.20181278","DOIUrl":null,"url":null,"abstract":"Realistic cloud is essential for enhancing the quality of computer graphics applications, such as flight simulation. Data-driven method is an effective way in cloud modeling, but existing methods typically only utilize one data source as input. For example, natural images are usually used to model small-scale cloud with details, and satellite images and WRF data are used to model large scale cloud without details. To construct large-scale cloud scene with details, we propose a novel method to extract relevant cloud information from both satellite and natural images. Experiments show our method can produce more detailed cloud scene comparing with existing methods.","PeriodicalId":88304,"journal":{"name":"Proceedings. Pacific Conference on Computer Graphics and Applications","volume":"84 1","pages":"49-52"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. Pacific Conference on Computer Graphics and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2312/PG.20181278","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Realistic cloud is essential for enhancing the quality of computer graphics applications, such as flight simulation. Data-driven method is an effective way in cloud modeling, but existing methods typically only utilize one data source as input. For example, natural images are usually used to model small-scale cloud with details, and satellite images and WRF data are used to model large scale cloud without details. To construct large-scale cloud scene with details, we propose a novel method to extract relevant cloud information from both satellite and natural images. Experiments show our method can produce more detailed cloud scene comparing with existing methods.
从多源图像建模详细的云场景
真实感云对于提高计算机图形应用程序(如飞行模拟)的质量至关重要。数据驱动方法是一种有效的云建模方法,但现有方法通常只利用一个数据源作为输入。例如,通常使用自然图像来模拟具有细节的小尺度云,而使用卫星图像和WRF数据来模拟没有细节的大尺度云。为了构建具有细节的大规模云场景,提出了一种从卫星和自然图像中提取相关云信息的新方法。实验表明,与现有方法相比,该方法可以生成更精细的云场景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信