The Phaseless Rank of a Matrix

IF 1.6 2区 数学 Q2 MATHEMATICS, APPLIED
António Pedro Goucha, J. Gouveia
{"title":"The Phaseless Rank of a Matrix","authors":"António Pedro Goucha, J. Gouveia","doi":"10.1137/19M1289820","DOIUrl":null,"url":null,"abstract":"We consider the problem of finding the smallest rank of a complex matrix whose absolute values of the entries are given. We call this minimum the phaseless rank of the matrix of the entrywise absolute values. In this paper we study this quantity, extending a classic result of Camion and Hoffman and connecting it to the study of amoebas of determinantal varieties and of semidefinite representations of convex sets. As a consequence, we prove that the set of maximal minors of a matrix of indeterminates form an amoeba basis for the ideal they define, and we attain a new upper bound on the complex semidefinite extension complexity of polytopes, dependent only on their number of vertices and facets. We also highlight the connections between the notion of phaseless rank and the problem of finding large sets of complex equiangular lines or mutually unbiased bases.","PeriodicalId":48489,"journal":{"name":"SIAM Journal on Applied Algebra and Geometry","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2019-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Applied Algebra and Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/19M1289820","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 8

Abstract

We consider the problem of finding the smallest rank of a complex matrix whose absolute values of the entries are given. We call this minimum the phaseless rank of the matrix of the entrywise absolute values. In this paper we study this quantity, extending a classic result of Camion and Hoffman and connecting it to the study of amoebas of determinantal varieties and of semidefinite representations of convex sets. As a consequence, we prove that the set of maximal minors of a matrix of indeterminates form an amoeba basis for the ideal they define, and we attain a new upper bound on the complex semidefinite extension complexity of polytopes, dependent only on their number of vertices and facets. We also highlight the connections between the notion of phaseless rank and the problem of finding large sets of complex equiangular lines or mutually unbiased bases.
矩阵的无相秩
考虑一个复矩阵的最小秩问题,其元素的绝对值给定。我们称这个最小值为入口绝对值矩阵的无相秩。在本文中,我们研究了这个量,推广了Camion和Hoffman的一个经典结果,并将其与对阿米巴的定变和凸集的半定表示的研究联系起来。因此,我们证明了一个不定式矩阵的极大次元的集合形成了它们所定义的理想的阿米巴基,并且我们得到了多面体的复半定扩展复杂度的一个新的上界,它只依赖于多面体的顶点数和面数。我们还强调了无相秩的概念与寻找大量复杂等角线或相互无偏基的问题之间的联系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.20
自引率
0.00%
发文量
19
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信