Few-shot Learning Using a Small-Sized Dataset of High-Resolution FUNDUS Images for Glaucoma Diagnosis

Mijung Kim, Jasper Zuallaert, W. D. Neve
{"title":"Few-shot Learning Using a Small-Sized Dataset of High-Resolution FUNDUS Images for Glaucoma Diagnosis","authors":"Mijung Kim, Jasper Zuallaert, W. D. Neve","doi":"10.1145/3132635.3132650","DOIUrl":null,"url":null,"abstract":"Deep learning has recently attracted a lot of attention, mainly thanks to substantial gains in terms of effectiveness. However, there is still room for significant improvement, especially when dealing with use cases that come with a limited availability of data, as is often the case in the area of medical image analysis. In this paper, we introduce a novel approach for early diagnosis of glaucoma in high-resolution FUNDUS images, only requiring a small number of training samples. In particular, we developed a predictive model based on a matching neural network architecture, integrating a high-resolution deep convolutional network that allows preserving the high-fidelity nature of the medical images. Our experimental results show that our predictive model is able to obtain higher levels of effectiveness than vanilla deep convolutional neural networks.","PeriodicalId":92693,"journal":{"name":"MMHealth'17 : proceedings of the 2nd International Workshop on Multimedia for Personal Health and Health Care : October 23, 2017, Mountain View, CA, USA. ACM Workshop on Multimedia for Personal Health and Health Care (2nd : 2017 : Mount...","volume":"321 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"MMHealth'17 : proceedings of the 2nd International Workshop on Multimedia for Personal Health and Health Care : October 23, 2017, Mountain View, CA, USA. ACM Workshop on Multimedia for Personal Health and Health Care (2nd : 2017 : Mount...","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3132635.3132650","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28

Abstract

Deep learning has recently attracted a lot of attention, mainly thanks to substantial gains in terms of effectiveness. However, there is still room for significant improvement, especially when dealing with use cases that come with a limited availability of data, as is often the case in the area of medical image analysis. In this paper, we introduce a novel approach for early diagnosis of glaucoma in high-resolution FUNDUS images, only requiring a small number of training samples. In particular, we developed a predictive model based on a matching neural network architecture, integrating a high-resolution deep convolutional network that allows preserving the high-fidelity nature of the medical images. Our experimental results show that our predictive model is able to obtain higher levels of effectiveness than vanilla deep convolutional neural networks.
使用小尺寸高分辨率眼底图像数据集的少镜头学习用于青光眼诊断
深度学习最近吸引了很多关注,主要是由于在有效性方面取得了实质性的进展。然而,仍然有很大的改进空间,特别是在处理数据可用性有限的用例时,就像医学图像分析领域经常出现的情况一样。在本文中,我们介绍了一种新的方法来早期诊断青光眼的高分辨率眼底图像,只需要少量的训练样本。特别是,我们开发了一个基于匹配神经网络架构的预测模型,集成了一个高分辨率的深度卷积网络,可以保持医学图像的高保真性。我们的实验结果表明,我们的预测模型能够获得比普通深度卷积神经网络更高的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信