Teaching Metal-Organic Frameworks to Conduct: Ion and Electron Transport in Metal-Organic Frameworks

IF 10.6 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Ruby A. Kharod, Justin L. Andrews, M. Dincǎ
{"title":"Teaching Metal-Organic Frameworks to Conduct: Ion and Electron Transport in Metal-Organic Frameworks","authors":"Ruby A. Kharod, Justin L. Andrews, M. Dincǎ","doi":"10.1146/annurev-matsci-080619-012811","DOIUrl":null,"url":null,"abstract":"Metal-organic frameworks (MOFs) are an expansive class of extended solids formed by coordination bonding between metal ions/clusters and organic ligands. Although MOFs are best known for their intrinsic porosity, they are now also emerging as an unusual set of porous, electrical, and ionic conductors that could address a number of applications in energy storage and generation. In this review, we focus on intrinsic ionic conductivity in MOFs and outline approaches for achieving high ionic conductivities. First, we highlight the use of noncoordinating acidic groups to integrate anions into MOF organic linkers. Next, we discuss the use of open metal sites to anchor anions and generate mobile ions. Then, we discuss the use of postsynthetic modifications to graft anions onto ligands and defect sites. Finally, we outline several unexplored approaches to improving ionic conductivity in MOFs and highlight several potential new applications. Expected final online publication date for the Annual Review of Materials Research, Volume 52 is July 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.","PeriodicalId":8055,"journal":{"name":"Annual Review of Materials Research","volume":"121 1","pages":""},"PeriodicalIF":10.6000,"publicationDate":"2022-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review of Materials Research","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1146/annurev-matsci-080619-012811","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 5

Abstract

Metal-organic frameworks (MOFs) are an expansive class of extended solids formed by coordination bonding between metal ions/clusters and organic ligands. Although MOFs are best known for their intrinsic porosity, they are now also emerging as an unusual set of porous, electrical, and ionic conductors that could address a number of applications in energy storage and generation. In this review, we focus on intrinsic ionic conductivity in MOFs and outline approaches for achieving high ionic conductivities. First, we highlight the use of noncoordinating acidic groups to integrate anions into MOF organic linkers. Next, we discuss the use of open metal sites to anchor anions and generate mobile ions. Then, we discuss the use of postsynthetic modifications to graft anions onto ligands and defect sites. Finally, we outline several unexplored approaches to improving ionic conductivity in MOFs and highlight several potential new applications. Expected final online publication date for the Annual Review of Materials Research, Volume 52 is July 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
教金属-有机框架传导:金属-有机框架中的离子和电子传递
金属有机骨架(mof)是一类由金属离子/簇与有机配体之间的配位键形成的扩展固体。尽管mof以其固有的多孔性而闻名,但它们现在也作为一种不寻常的多孔、电和离子导体出现,可以解决能源存储和发电方面的许多应用。在这篇综述中,我们重点讨论了mof的本征离子电导率,并概述了实现高离子电导率的方法。首先,我们强调使用非配位酸性基团将阴离子整合到MOF有机连接剂中。接下来,我们讨论了使用开放的金属位点来锚定阴离子并产生可移动离子。然后,我们讨论了利用合成后修饰将阴离子接枝到配体和缺陷位点上。最后,我们概述了几种尚未开发的提高mof中离子电导率的方法,并强调了几种潜在的新应用。预计《材料研究年度评论》第52卷的最终在线出版日期为2022年7月。修订后的估计数请参阅http://www.annualreviews.org/page/journal/pubdates。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Annual Review of Materials Research
Annual Review of Materials Research 工程技术-材料科学:综合
CiteScore
17.70
自引率
1.00%
发文量
21
期刊介绍: The Annual Review of Materials Research, published since 1971, is a journal that covers significant developments in the field of materials research. It includes original methodologies, materials phenomena, material systems, and special keynote topics. The current volume of the journal has been converted from gated to open access through Annual Reviews' Subscribe to Open program, with all articles published under a CC BY license. The journal defines its scope as encompassing significant developments in materials science, including methodologies for studying materials and materials phenomena. It is indexed and abstracted in various databases, such as Scopus, Science Citation Index Expanded, Civil Engineering Abstracts, INSPEC, and Academic Search, among others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信