Claire Chang Li Si, Fedawin Johing, Yoon Chiang Wong, Nur Melatee Binti Mohd Fauzi, A. Mohamad, Kwang Chian Chiew, Kit Teng Chaw
{"title":"A Case Study on Field F Multiphase Flow Meter: How is it Better than a Conventional Test Separator?","authors":"Claire Chang Li Si, Fedawin Johing, Yoon Chiang Wong, Nur Melatee Binti Mohd Fauzi, A. Mohamad, Kwang Chian Chiew, Kit Teng Chaw","doi":"10.2118/205557-ms","DOIUrl":null,"url":null,"abstract":"\n Multiphase flow meters (MPFM) have been known save costs for new installations, are compact and as effective as a test separator. Field \"F\" is a green field with 2 wells and has been producing since 2018 from the same reservoir. The test facilities consist of an MPFM, and F flows to a hub called Field \"G\". Towards Q2 of 2019, there was a significant increase in production rates from both wells without any changes to surface choke size and without enhancement jobs performed. Added to that, reservoir pressure showed steady depletion. Daily production allocation for F showed lower than usual reconciliation factor when combined with G hub production. This suboptimal allocation raised doubts about the MPFM well test readings which launched a full investigation into the accuracy of the meter.\n From the offshore remote monitoring system, the first suspect was the increased inlet pressure causing parameters to be out of the MPFM operating envelope range. However, after further checking, there were other pressing issues such as faulty transmitter, and low range sensors. As these issues were being dealt with amidst the COVID-19 pandemic, the process to fix the meter was longer than usual. Rectification involved troubleshooting the MPFM post performing Multi Rate Tests, back allocation check to hub production and PROSPER/GAP model matching to check on the credibility of the well tests. These efforts were made due to budget cuts, as there was no advantage to bring onboard an entire well test package (separator) to test the F wells.\n Post several rectifications, the liquid, gas and oil rates were within 10% difference from allocation meter back allocation and PROSPER model calculation. Reconciliation factor for field G has also increased to normal range of 0.92 to 0.95. However, the rectification also showed a significant drop in metered rates, proving that the MPFM was indeed generating incorrect well tests since Q2 2019. The drop was higher than 30% in gross production rates which lead to a better understanding of the reservoir, and corrections to be made to dynamic models for any future development projects. This hence proves that even with the similar reservoir properties in both wells, the MPFM well tests still require vigorous checking and should not be treated in the same way as a test separator.\n This paper will describe the efforts by surface and subsurface faculties to ensure the quality of well tests from the MPFM. For future projects considering the MPFM installation, best to frequently quality check the MPFM well test figures with a test separator. However, if that option is not feasible, the efforts in this paper can act as a guide for the field.","PeriodicalId":11052,"journal":{"name":"Day 3 Thu, October 14, 2021","volume":"37 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 3 Thu, October 14, 2021","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/205557-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Multiphase flow meters (MPFM) have been known save costs for new installations, are compact and as effective as a test separator. Field "F" is a green field with 2 wells and has been producing since 2018 from the same reservoir. The test facilities consist of an MPFM, and F flows to a hub called Field "G". Towards Q2 of 2019, there was a significant increase in production rates from both wells without any changes to surface choke size and without enhancement jobs performed. Added to that, reservoir pressure showed steady depletion. Daily production allocation for F showed lower than usual reconciliation factor when combined with G hub production. This suboptimal allocation raised doubts about the MPFM well test readings which launched a full investigation into the accuracy of the meter.
From the offshore remote monitoring system, the first suspect was the increased inlet pressure causing parameters to be out of the MPFM operating envelope range. However, after further checking, there were other pressing issues such as faulty transmitter, and low range sensors. As these issues were being dealt with amidst the COVID-19 pandemic, the process to fix the meter was longer than usual. Rectification involved troubleshooting the MPFM post performing Multi Rate Tests, back allocation check to hub production and PROSPER/GAP model matching to check on the credibility of the well tests. These efforts were made due to budget cuts, as there was no advantage to bring onboard an entire well test package (separator) to test the F wells.
Post several rectifications, the liquid, gas and oil rates were within 10% difference from allocation meter back allocation and PROSPER model calculation. Reconciliation factor for field G has also increased to normal range of 0.92 to 0.95. However, the rectification also showed a significant drop in metered rates, proving that the MPFM was indeed generating incorrect well tests since Q2 2019. The drop was higher than 30% in gross production rates which lead to a better understanding of the reservoir, and corrections to be made to dynamic models for any future development projects. This hence proves that even with the similar reservoir properties in both wells, the MPFM well tests still require vigorous checking and should not be treated in the same way as a test separator.
This paper will describe the efforts by surface and subsurface faculties to ensure the quality of well tests from the MPFM. For future projects considering the MPFM installation, best to frequently quality check the MPFM well test figures with a test separator. However, if that option is not feasible, the efforts in this paper can act as a guide for the field.