Weighted homogeneous surface singularities homeomorphic to Brieskorn complete intersections

IF 0.4 Q4 MATHEMATICS
Tomohiro Okuma
{"title":"Weighted homogeneous surface singularities homeomorphic to Brieskorn complete intersections","authors":"Tomohiro Okuma","doi":"10.5427/jsing.2021.23j","DOIUrl":null,"url":null,"abstract":"For a given topological type of a normal surface singularity, there are various types of complex structures which realize it. We are interested in the following problem: Find the maximum of the geometric genus and a condition for that the maximal ideal cycle coincides with the undamental cycle on the minimal good resolution. In this paper, we study weighted homogeneous surface singularities homeomorphic to Brieskorn complete intersection singularities from the perspective of the problem.","PeriodicalId":44411,"journal":{"name":"Journal of Singularities","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2020-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Singularities","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5427/jsing.2021.23j","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

For a given topological type of a normal surface singularity, there are various types of complex structures which realize it. We are interested in the following problem: Find the maximum of the geometric genus and a condition for that the maximal ideal cycle coincides with the undamental cycle on the minimal good resolution. In this paper, we study weighted homogeneous surface singularities homeomorphic to Brieskorn complete intersection singularities from the perspective of the problem.
Brieskorn完全交点的加权齐次曲面奇异同胚
对于给定拓扑类型的法向曲面奇点,有各种类型的复杂结构可以实现它。我们感兴趣的问题是:在最小好分辨率下,求几何格的最大值和最大理想环与基本环重合的条件。本文从问题的角度研究了与Brieskorn完全相交奇异同胚的加权齐次曲面奇异。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
28
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信