On the Derivative of the Minkowski Question-Mark Function

D. Gayfulin
{"title":"On the Derivative of the Minkowski Question-Mark Function","authors":"D. Gayfulin","doi":"10.2478/udt-2022-0014","DOIUrl":null,"url":null,"abstract":"Abstract The Minkowski question-mark function ?(x) is a continuous monotonous function defined on [0, 1] interval. It is well known fact that the derivative of this function, if exists, can take only two values: 0 and +∞.It isalso known that the value of the derivative ? (x)atthe point x =[0; a1,a2,...,at,...] is connected with the limit behaviour of the arithmetic mean (a1 +a2 +···+at)/t. Particularly, N. Moshchevitin and A. Dushistova showed that if a1+a2+⋯+at<κ1, {a_1} + {a_2} + \\cdots + {a_t} < {\\kappa _1}, where κ1=2log(1+52)/log2=1.3884… {\\kappa _1} = 2\\log \\left( {{{1 + \\sqrt 5 } \\over 2}} \\right)/\\log 2 = 1.3884 \\ldots , then ?′(x)=+∞.They also proved that the constant κ1 is non-improvable. We consider a dual problem: how small can be the quantity a1 + a2 + ··· + at − κ1t if we know that ? (x) = 0? We obtain the non-improvable estimates of this quantity.","PeriodicalId":23390,"journal":{"name":"Uniform distribution theory","volume":"126 1","pages":"101 - 126"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Uniform distribution theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/udt-2022-0014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Abstract The Minkowski question-mark function ?(x) is a continuous monotonous function defined on [0, 1] interval. It is well known fact that the derivative of this function, if exists, can take only two values: 0 and +∞.It isalso known that the value of the derivative ? (x)atthe point x =[0; a1,a2,...,at,...] is connected with the limit behaviour of the arithmetic mean (a1 +a2 +···+at)/t. Particularly, N. Moshchevitin and A. Dushistova showed that if a1+a2+⋯+at<κ1, {a_1} + {a_2} + \cdots + {a_t} < {\kappa _1}, where κ1=2log(1+52)/log2=1.3884… {\kappa _1} = 2\log \left( {{{1 + \sqrt 5 } \over 2}} \right)/\log 2 = 1.3884 \ldots , then ?′(x)=+∞.They also proved that the constant κ1 is non-improvable. We consider a dual problem: how small can be the quantity a1 + a2 + ··· + at − κ1t if we know that ? (x) = 0? We obtain the non-improvable estimates of this quantity.
关于闵可夫斯基问号函数的导数
Minkowski问号函数?(x)是定义在区间[0,1]上的连续单调函数。众所周知,这个函数的导数,如果存在,只能取两个值:0和+∞。我们还知道导数的值?(x)在点x =[0;a1,a2,…,at,…]与算术平均值(a1 +a2 +···+at)/t的极限行为有关。特别是,N. Moshchevitin和A. Dushistova表明,如果a1+a2+⋯⋯+at<κ{1, }a_1{ + a_2} + \cdots + {a_t} < {\kappa _1,}其中κ1=2log(1+52)/log2=1.3884…{\kappa _1 }=2\log\left ({{{1+\sqrt 5 }\over 2 }}\right)/ \log 2=1.3884 \ldots,则? ' (x)=+∞。他们还证明了恒定的κ1是不可改进的。我们考虑一个对偶问题:如果我们知道a1 + a2 +···+ at - κ1t有多小?(x) = 0?我们得到了这个量的不可改进估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信