Downshifting and Antireflective Thin Films for Solar Module Power Enhancement

Yujuan He, Jie Liu, S. Sung, Chih-hung Chang
{"title":"Downshifting and Antireflective Thin Films for Solar Module Power Enhancement","authors":"Yujuan He, Jie Liu, S. Sung, Chih-hung Chang","doi":"10.2139/ssrn.3805247","DOIUrl":null,"url":null,"abstract":"Abstract Efforts to enhance the solar conversion efficiency have prevailed for decades. There is a growing interest in improving the spectral response of solar modules, especially in harvesting UV photons, which offer intense energy in a narrow wavelength range. To harvest UV photons and reduce reflection without interfering with the formulas and manufacturing process of solar cells, in this work, thin films that possess downshifting and antireflection capabilities were fabricated on the cover glass of multicrystalline Si solar cells. The thin films were composed of graded index layers of europium-doped yttrium orthovanadate (YVO4:Eu) and hollow silica nanoparticles (HSNPs). The design of the composite thin films was assisted by the FDTD mathematical model that simulated the refractive index and thickness of each layer to obtain the optimum transmittance. The cover glass with multifunctional thin films harvested more than 30% of UV photons and enhanced the solar conversion efficiency by 4.12% at normal incidence compared to the uncoated cover glass.","PeriodicalId":18341,"journal":{"name":"Materials Science eJournal","volume":"36 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3805247","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

Abstract Efforts to enhance the solar conversion efficiency have prevailed for decades. There is a growing interest in improving the spectral response of solar modules, especially in harvesting UV photons, which offer intense energy in a narrow wavelength range. To harvest UV photons and reduce reflection without interfering with the formulas and manufacturing process of solar cells, in this work, thin films that possess downshifting and antireflection capabilities were fabricated on the cover glass of multicrystalline Si solar cells. The thin films were composed of graded index layers of europium-doped yttrium orthovanadate (YVO4:Eu) and hollow silica nanoparticles (HSNPs). The design of the composite thin films was assisted by the FDTD mathematical model that simulated the refractive index and thickness of each layer to obtain the optimum transmittance. The cover glass with multifunctional thin films harvested more than 30% of UV photons and enhanced the solar conversion efficiency by 4.12% at normal incidence compared to the uncoated cover glass.
用于太阳能组件功率增强的降档和抗反射薄膜
提高太阳能转换效率的努力已经盛行了几十年。人们对提高太阳能组件的光谱响应越来越感兴趣,特别是在收集紫外光子方面,它在狭窄的波长范围内提供强烈的能量。为了在不影响太阳能电池的配方和制造工艺的情况下收集紫外线光子并降低反射,本研究在多晶硅太阳能电池的盖板玻璃上制备了具有降移和抗反射能力的薄膜。该薄膜由掺杂铕的正钒酸钇(YVO4:Eu)和空心二氧化硅纳米颗粒(HSNPs)组成。利用时域有限差分(FDTD)数学模型模拟各层薄膜的折射率和厚度,以获得最佳透光率。与未涂覆的盖板玻璃相比,具有多功能薄膜的盖板玻璃捕获了超过30%的紫外光子,在正入射下太阳能转换效率提高了4.12%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信