PrefixFPM: A Parallel Framework for General-Purpose Frequent Pattern Mining

Da Yan, Wenwen Qu, Guimu Guo, Xiaoling Wang
{"title":"PrefixFPM: A Parallel Framework for General-Purpose Frequent Pattern Mining","authors":"Da Yan, Wenwen Qu, Guimu Guo, Xiaoling Wang","doi":"10.1109/ICDE48307.2020.00208","DOIUrl":null,"url":null,"abstract":"Frequent pattern mining (FPM) has been a focused theme in data mining research for decades, but there lacks a general programming framework that can be easily customized to mine different kinds of frequent patterns, and existing solutions to FPM over big transaction databases are IO-bound rendering CPU cores underutilized even though FPM is NP-hard.This paper presents, PrefixFPM, a general-purpose framework for FPM that is able to fully utilize the CPU cores in a multicore machine. PrefixFPM follows the idea of prefix projection to partition the workloads of PFM into independent tasks by divide and conquer. PrefixFPM exposes a unified programming interface to users who can customize it to mine their desired patterns, and the parallel execution engine is transparent to end-users and can be reused for mining all kinds of patterns. We have adapted the state-of-the-art serial algorithms for mining frequent patterns including subsequences, subtrees, and subgraphs on top of PrefixFPM, and extensive experiments demonstrate an excellent speedup ratio of PrefixFPM with the number of cores.A demo is available at https://youtu.be/PfioC0GDpsw; the code is available at https://github.com/yanlab19870714/PrefixFPM.","PeriodicalId":6709,"journal":{"name":"2020 IEEE 36th International Conference on Data Engineering (ICDE)","volume":"45 1","pages":"1938-1941"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 36th International Conference on Data Engineering (ICDE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDE48307.2020.00208","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

Frequent pattern mining (FPM) has been a focused theme in data mining research for decades, but there lacks a general programming framework that can be easily customized to mine different kinds of frequent patterns, and existing solutions to FPM over big transaction databases are IO-bound rendering CPU cores underutilized even though FPM is NP-hard.This paper presents, PrefixFPM, a general-purpose framework for FPM that is able to fully utilize the CPU cores in a multicore machine. PrefixFPM follows the idea of prefix projection to partition the workloads of PFM into independent tasks by divide and conquer. PrefixFPM exposes a unified programming interface to users who can customize it to mine their desired patterns, and the parallel execution engine is transparent to end-users and can be reused for mining all kinds of patterns. We have adapted the state-of-the-art serial algorithms for mining frequent patterns including subsequences, subtrees, and subgraphs on top of PrefixFPM, and extensive experiments demonstrate an excellent speedup ratio of PrefixFPM with the number of cores.A demo is available at https://youtu.be/PfioC0GDpsw; the code is available at https://github.com/yanlab19870714/PrefixFPM.
PrefixFPM:通用频繁模式挖掘的并行框架
频繁模式挖掘(FPM)几十年来一直是数据挖掘研究中的一个重点主题,但缺乏一个通用的编程框架,可以轻松地定制来挖掘不同类型的频繁模式,并且现有的大型事务数据库上的FPM解决方案是io绑定的,尽管FPM是NP-hard的,但CPU内核的利用率却不足。PrefixFPM是一种通用的FPM框架,能够充分利用多核机器的CPU核。PrefixFPM遵循前缀投影的思想,通过分治法将PFM的工作负载划分为独立的任务。PrefixFPM向用户公开了一个统一的编程接口,用户可以定制它来挖掘他们想要的模式,并行执行引擎对最终用户是透明的,可以被重用来挖掘所有类型的模式。我们在PrefixFPM之上采用了最先进的串行算法来挖掘频繁模式,包括子序列、子树和子图,并且大量的实验证明了PrefixFPM随着内核数量的增加具有出色的加速比。可在https://youtu.be/PfioC0GDpsw获得演示;代码可在https://github.com/yanlab19870714/PrefixFPM上获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信