{"title":"Homeotropic and planar structures in liquid-crystalline polymer brushes","authors":"T.M. Birshtein, V.M. Amoskov","doi":"10.1016/S1089-3156(99)00068-9","DOIUrl":null,"url":null,"abstract":"<div><p>The ordering in polymer brushes<span> formed by macromolecules with mesogenic groups in the main chain is investigated. The numerical method of self-consistent field approximation was used. The existence of two different liquid crystalline nematic states is shown: homeotropic (HLC) and planar (PLC) states. The free energy of the HLC state is always less than that of the PLC state. However, with the increase of energy of anisotropic interactions, (with decrease in temperature) our numerical procedure leads us to either one or another state depending on the grafting density. The results obtained show that both brush surfaces, play an essential role in establishing the concrete LC state structure. The grafting surface and the external surface force the planar order.</span></p></div>","PeriodicalId":100309,"journal":{"name":"Computational and Theoretical Polymer Science","volume":"10 1","pages":"Pages 159-163"},"PeriodicalIF":0.0000,"publicationDate":"2000-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S1089-3156(99)00068-9","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational and Theoretical Polymer Science","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1089315699000689","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8
Abstract
The ordering in polymer brushes formed by macromolecules with mesogenic groups in the main chain is investigated. The numerical method of self-consistent field approximation was used. The existence of two different liquid crystalline nematic states is shown: homeotropic (HLC) and planar (PLC) states. The free energy of the HLC state is always less than that of the PLC state. However, with the increase of energy of anisotropic interactions, (with decrease in temperature) our numerical procedure leads us to either one or another state depending on the grafting density. The results obtained show that both brush surfaces, play an essential role in establishing the concrete LC state structure. The grafting surface and the external surface force the planar order.