Predictive models in EUS/ERCP

IF 3.2 3区 医学 Q2 GASTROENTEROLOGY & HEPATOLOGY
Barbara Lattanzi , Daryl Ramai , Paraskevas Gkolfakis , Antonio Facciorusso
{"title":"Predictive models in EUS/ERCP","authors":"Barbara Lattanzi ,&nbsp;Daryl Ramai ,&nbsp;Paraskevas Gkolfakis ,&nbsp;Antonio Facciorusso","doi":"10.1016/j.bpg.2023.101856","DOIUrl":null,"url":null,"abstract":"<div><p>Predictive models (PMs) in endoscopic retrograde cholangiopancreatography (ERCP) and endoscopic ultrasound (EUS) have the potential to improve patient outcomes, enhance diagnostic accuracy, and guide therapeutic interventions. This review aims to summarize the current state of predictive models in ERCP and EUS and their clinical implications. To be considered useful in clinical practice a PM should be accurate, easy to perform, and may consider objective variables. PMs in ERCP estimate correct indication, probability of success, and the risk of developing adverse events. These models incorporate patient-related factors and technical aspects of the procedure. In the field of EUS, these models utilize clinical and imaging data to predict the likelihood of malignancy, presence of specific lesions, or risk of complications related to therapeutic interventions. Further research, validation, and refinement are necessary to maximize the utility and impact of these models in routine clinical practice.</p></div>","PeriodicalId":56031,"journal":{"name":"Best Practice & Research Clinical Gastroenterology","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1521691823000367/pdfft?md5=cbc3471b10ee516e7622904aa3da3a59&pid=1-s2.0-S1521691823000367-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Best Practice & Research Clinical Gastroenterology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1521691823000367","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GASTROENTEROLOGY & HEPATOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Predictive models (PMs) in endoscopic retrograde cholangiopancreatography (ERCP) and endoscopic ultrasound (EUS) have the potential to improve patient outcomes, enhance diagnostic accuracy, and guide therapeutic interventions. This review aims to summarize the current state of predictive models in ERCP and EUS and their clinical implications. To be considered useful in clinical practice a PM should be accurate, easy to perform, and may consider objective variables. PMs in ERCP estimate correct indication, probability of success, and the risk of developing adverse events. These models incorporate patient-related factors and technical aspects of the procedure. In the field of EUS, these models utilize clinical and imaging data to predict the likelihood of malignancy, presence of specific lesions, or risk of complications related to therapeutic interventions. Further research, validation, and refinement are necessary to maximize the utility and impact of these models in routine clinical practice.

EUS/ERCP 的预测模型
内镜逆行胆管造影(ERCP)和内镜超声(EUS)的预测模型(pm)具有改善患者预后、提高诊断准确性和指导治疗干预的潜力。本文综述了ERCP和EUS预测模型的现状及其临床意义。为了在临床实践中被认为有用,PM应该准确,易于执行,并且可以考虑客观变量。ERCP中的pm估计正确的适应症、成功的概率和发生不良事件的风险。这些模型结合了患者相关因素和手术的技术方面。在EUS领域,这些模型利用临床和影像学数据来预测恶性肿瘤的可能性、特定病变的存在或与治疗干预相关的并发症的风险。进一步的研究,验证和改进是必要的,以最大限度地发挥这些模型在常规临床实践中的效用和影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.50
自引率
0.00%
发文量
23
审稿时长
69 days
期刊介绍: Each topic-based issue of Best Practice & Research Clinical Gastroenterology will provide a comprehensive review of current clinical practice and thinking within the specialty of gastroenterology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信